cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 17, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 119, 51, 135, 55, 135, 59, 77, 63, 65, 161, 175, 33, 19, 75, 195, 63, 187, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 275, 23, 255, 91, 295, 119, 231, 123, 315
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

The unitary abundancy index of a number k is A034448(k)/k = A332882(k)/A332883(k).
The record values of a(n)/A374784(n) are attained at the primorial numbers (A002110).
The least number k such that a(k)/A374784(k) is larger than 2, 3, 4, ..., is A002110(9) = 223092870, A002110(314) = 7.488... * 10^878, A002110(65599) = 5.373... * 10^356774, ... .

Examples

			For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}

Formula

Let f(n) = a(n)/A374784(n). Then:
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} usigma(d)/d) / ud(n), where usigma(n) is the sum of unitary divisors of n (A034448), and ud(n) is their number (A034444).
f(n) is multiplicative with f(p^e) = 1 + 1/(2*p^e).
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} d*ud(d))/(n*ud(n)) = A343525(n)/(n*A034444(n)).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/(2*p^(s+1)) - 1/(2*p^(2*s+1))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 + 1/(2*p*(p+1))) = 1.17443669198552182119... . For comparison, the asymptotic mean of the unitary abundancy index over all the positive integers is zeta(2)/zeta(3) = 1.368432... (A306633).
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).

A374784 Denominator of the mean unitary abundancy index of the unitary divisors of n.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 16, 18, 8, 22, 16, 26, 56, 60, 32, 34, 72, 38, 80, 4, 88, 46, 96, 50, 104, 54, 112, 58, 48, 62, 64, 132, 136, 28, 16, 74, 152, 52, 160, 82, 16, 86, 176, 180, 184, 94, 64, 98, 40, 204, 208, 106, 216, 20, 224, 76, 232, 118, 160, 122, 248
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Examples

			For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = denominator(9/8) = 8.
		

Crossrefs

Cf. A034444, A034448 (usigma), A077610, A374783 (numerators).
Similar sequences: A374777/A374778, A374786/A374787.

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); denominator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}

A374787 Denominator of the mean infinitary abundancy index of the infinitary divisors of n.

Original entry on oeis.org

1, 4, 6, 8, 10, 24, 14, 32, 18, 8, 22, 16, 26, 56, 60, 32, 34, 72, 38, 80, 4, 88, 46, 64, 50, 104, 108, 112, 58, 48, 62, 128, 132, 136, 28, 16, 74, 152, 52, 64, 82, 16, 86, 176, 180, 184, 94, 64, 98, 40, 204, 208, 106, 432, 20, 448, 76, 232, 118, 160, 122, 248
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Examples

			For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = denominator(9/8) = 8.
		

Crossrefs

Cf. A037445, A049417 (isigma), A077609, A374786 (numerators).
Similar sequences: A374777/A374778, A374783/A374784.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Denominator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); denominator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))));}

A374788 Numbers whose infinitary divisors have a mean infinitary abundancy index that is larger than 2.

Original entry on oeis.org

7560, 9240, 10920, 83160, 98280, 120120, 120960, 128520, 143640, 147840, 154440, 157080, 173880, 174720, 175560, 185640, 189000, 190080, 201960, 207480, 212520, 216216, 219240, 224640, 225720, 228480, 231000, 234360, 238680, 251160, 255360, 266112, 266760, 267960
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

Numbers k such that A374786(k)/A374787(k) > 2.
The least odd term is 17737266779965459404793703604641625, and the least term that is coprime to 6 is 5^7 * (7 * 11 * ... * 23)^3 * 29 * 31 * ... * 751 = 3.140513... * 10^329.

Examples

			7560 is a term since A374786(7560)/A374787(7560) = 1045/512 = 2.041... > 2.
		

Crossrefs

Similar sequences: A245214, A374785.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], ?(# == 1 &)])); q[1] = False; q[n] := Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n]))) > 2; Select[Range[300000], q]
  • PARI
    is(n) = {my(f = factor(n), b); prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1))) > 2;}
Showing 1-4 of 4 results.