cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374870 Let e(m) be the sum of all values of k satisfying the equation: (m mod k = floor((m - k)/k) mod k), minus 2*m (1 <= k <= m); then a(n) is the smallest m for which e(m) = n, or 0 if no e(m) has value n.

Original entry on oeis.org

39, 23, 5847, 735, 65, 29, 35, 77, 111, 173, 415, 185, 79, 47, 113, 137, 317, 867, 307, 543, 4843, 2153, 1203, 161, 59, 159, 351, 531, 1577, 475, 617, 89, 5321, 95, 11405, 1371, 107, 83, 219, 197, 199, 1855, 365, 6521, 3667, 8597, 131
Offset: 0

Views

Author

Lechoslaw Ratajczak, Sep 16 2024

Keywords

Comments

The three smallest values of n (n_1, n_2, n_3) for which a(n) is unknown after computing consecutive e(t) for 1 <= t <= z:
z | n_1 | n_2 | n_3 |
----------------------------------------
10^5 | 309 | 343 | 352 |
2*10^5 | 394 | 556 | 558 |
3*10^5 | 647 | 706 | 755 |
4*10^5 | 941 | 951 | 962 |
5*10^5 | 951 | 964 | 1069 |
Are there any values of n for which a(n) = 0?

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i.
The triangle begins:
i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
-----------------------------------------
  1 | 1
  2 | 1 1
  3 | 1 0 1
  4 | 1 0 0 1
  5 | 1 1 0 0 1
  6 | 1 1 0 0 0 1
  7 | 1 0 1 0 0 0 1
  8 | 1 0 0 0 0 0 0 1
  9 | 1 1 0 1 0 0 0 0 1
 10 | 1 1 0 0 0 0 0 0 0 1
 11 | 1 0 1 0 1 0 0 0 0 0 1
 12 | 1 0 1 0 0 0 0 0 0 0 0 1
 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1
 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1
 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
 ...
The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows.
a(0) = 39 because 39 is the smallest m for which e(m) = 0 (only k's satisfying the equation: 39 mod k = floor((39 - k)/k) mod k are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39-2*39 = 0 = e(39)).
a(2) = 5847 because 5847 is the smallest m for which e(m) = 2 (only k's satisfying the equation: 5847 mod k = floor((5847 - k)/k) mod k are: 1, 85, 135, 171, 343, 730, 1461, 2923, 5847, hence: 1+85+135+171+343+730+1461+2923+5847-2*5847 = 2 = e(5847)).
		

Crossrefs

Programs

  • VBA
    Sub calcul()
    For m = 1 To 500000
    s = 0
          For k = 1 To WorksheetFunction.Floor(m / 2, 1)
                If (m - WorksheetFunction.Floor((m - k) / k, 1)) Mod k = 0 Then
                s = s + k
                End If
          Next k
                       If s > m Then
                       e = s - m
                       v = WorksheetFunction.Ceiling(e / 1000000, 1)
                            If IsEmpty(Cells(e - (v - 1) * 1000000, v)) = False Then
                            Else
                            Cells(e - (v - 1) * 1000000, v).Value = m
                            End If
                       End If
    Next m
    End Sub