A374870 Let e(m) be the sum of all values of k satisfying the equation: (m mod k = floor((m - k)/k) mod k), minus 2*m (1 <= k <= m); then a(n) is the smallest m for which e(m) = n, or 0 if no e(m) has value n.
39, 23, 5847, 735, 65, 29, 35, 77, 111, 173, 415, 185, 79, 47, 113, 137, 317, 867, 307, 543, 4843, 2153, 1203, 161, 59, 159, 351, 531, 1577, 475, 617, 89, 5321, 95, 11405, 1371, 107, 83, 219, 197, 199, 1855, 365, 6521, 3667, 8597, 131
Offset: 0
Keywords
Examples
Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i. The triangle begins: i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ----------------------------------------- 1 | 1 2 | 1 1 3 | 1 0 1 4 | 1 0 0 1 5 | 1 1 0 0 1 6 | 1 1 0 0 0 1 7 | 1 0 1 0 0 0 1 8 | 1 0 0 0 0 0 0 1 9 | 1 1 0 1 0 0 0 0 1 10 | 1 1 0 0 0 0 0 0 0 1 11 | 1 0 1 0 1 0 0 0 0 0 1 12 | 1 0 1 0 0 0 0 0 0 0 0 1 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ... The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows. a(0) = 39 because 39 is the smallest m for which e(m) = 0 (only k's satisfying the equation: 39 mod k = floor((39 - k)/k) mod k are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39-2*39 = 0 = e(39)). a(2) = 5847 because 5847 is the smallest m for which e(m) = 2 (only k's satisfying the equation: 5847 mod k = floor((5847 - k)/k) mod k are: 1, 85, 135, 171, 343, 730, 1461, 2923, 5847, hence: 1+85+135+171+343+730+1461+2923+5847-2*5847 = 2 = e(5847)).
Programs
-
VBA
Sub calcul() For m = 1 To 500000 s = 0 For k = 1 To WorksheetFunction.Floor(m / 2, 1) If (m - WorksheetFunction.Floor((m - k) / k, 1)) Mod k = 0 Then s = s + k End If Next k If s > m Then e = s - m v = WorksheetFunction.Ceiling(e / 1000000, 1) If IsEmpty(Cells(e - (v - 1) * 1000000, v)) = False Then Else Cells(e - (v - 1) * 1000000, v).Value = m End If End If Next m End Sub
Comments