A374883 Decimal expansion of phi*(2*phi + 1) (i.e., (7 + 3*sqrt(5))/2), where phi is the golden ratio.
6, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2
Offset: 1
Examples
6.8541019662496845446137605030969...
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
Links
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
- Marco Ripà, General uncrossing covering paths inside the Axis-Aligned Bounding Box, Journal of Fundamental Mathematics and Applications, Volume 4, 2021, Number 2, Pages 154-166.
Crossrefs
Programs
-
Mathematica
RealDigits[3*GoldenRatio + 2, 10, 120][[1]] (* Amiram Eldar, Jul 23 2024 *)
Formula
Equals (7 + 3*sqrt(5))/2.
Equals phi^2*(phi + 1), where phi = (1 + sqrt(5))/2.
Equals phi^4. - Stefano Spezia, May 28 2025
Comments