A374918 Even numbers k such that lambda(sum of even divisors of k) = phi(sum of odd divisors of k) where lambda is the Carmichael function (A002322) and phi the Euler totient function (A000010).
2, 6, 10, 12, 14, 18, 26, 28, 34, 36, 42, 50, 52, 62, 72, 74, 84, 100, 106, 112, 122, 124, 136, 144, 146, 148, 162, 186, 194, 200, 244, 254, 292, 296, 314, 324, 336, 372, 386, 388, 424, 434, 482, 488, 496, 508, 554, 576, 578, 584, 626, 628, 656, 674, 688, 762
Offset: 1
Keywords
Examples
a(18) = 100 because the divisors of 100 are {1, 2, 4, 5, 10, 20, 25, 50, 100} with lambda(2+4+10+20+50+100) = lambda(186) = 30 and phi(1+5+25) = phi(31) = 30.
Programs
-
Maple
with(numtheory):nn:=800: for n from 2 by 2 to nn do: d:=divisors(n):n0:=nops(d):s0:=0:s1:=0: for i from 1 to n0 do: if irem(d[i],2)=0 then s0:=s0+d[i] else s1:=s1+d[i]: fi: od: if lambda(s0)=phi(s1) then printf(`%d, `,n):else fi: od:
-
Mathematica
Select[Range[2, 1000, 2], EulerPhi[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] == CarmichaelLambda[2*DivisorSigma[1, #/2]] &] (* Amiram Eldar, Jul 23 2024 *)