A374934 Maximum number of squares covered (i.e., attacked) by 4 independent (i.e., nonattacking) queens on an n X n chessboard.
16, 25, 36, 49, 62, 76, 92, 104, 120, 136, 152, 168, 184, 200, 216
Offset: 4
Examples
4 X 4: x Q x x x x x Q Q x x x x x Q x 5 X 5 there are several arrangements: x Q x x x x x x x x x x x x Q Q x x x x x x x Q x 6 X 6 and 7 X 7 (add a row and column) pattern as 4 queens knight-1,3 and 1,4 separation (not symmetric): . . . . . . . x x x x Q x . Q x x x x x . x x x x x x . x x x x x Q . x Q x x x x . 8 X 8: queens all knight-1,4 apart; 8 X 8 has 2 o/s; 9 X 9 has 5 o/s; 10 X 10 has 8 o/s; o x x x x x x x x o x o x x x x x x o x x x x Q x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x Q x x x x o x x x x x x o x o x x x x x x x x o beyond 10 X 10, the 4 queens separated as 1,2 knights begins to be the best layout; at 15 X 15, the pattern is clear. o x x o o x x x x o o x x o x x o x x o x x x x o x x o x x x x o x x x x x x x x o x x o o x x o x x x x x x o x x o o o o x x o x x x x o x x o o o x x x x x x Q x x x x x x x x x x x x x x x x Q x x x x x x x x x x x Q x x x x x x x x x x x x x x x x Q x x x x x x x o o x x o x x x x o x x o o o o x x o x x x x x x o x x o o x x o x x x x x x x x o x x o x o x x o x x x x o x x o x x o x x o o x x x x o o x x o x x x o o o x x x x o o o x x o
Crossrefs
Extensions
a(18) added using data from Mia Muessig by Andrew Howroyd, Oct 05 2024