cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374947 a(n) is the number of suitably connected Legendrian n-Mosaics.

Original entry on oeis.org

1, 2, 20, 1504, 948032, 5204262912, 254112496082944, 111879597850371293184, 448381477417976615986528256, 16469260582635747355818375736459264, 5571666891811926168753521842383673521864704, 17424018517043252553551626372130243982114254609186816
Offset: 1

Views

Author

Keywords

Comments

A Legendrian n-mosaic is an n X n array of the 10 tiles given in Figure 5 of Pezzimenti and Pandey. These tiles represent part of a Legendrian curve in the front projection.
A Legendrian n-mosaic is suitably connected iff the connection points of each tile coincide with those of all contiguous tiles. Note that the n-mosaic consisting of all blank tiles is vacuously suitably connected even though it does not represent a link.
This is the main diagonal of A375354. It appears to grow at a quadratic exponential rate, and the ratios a(n)/A261400(n) seem to converge to 0 at a quadratic exponential rate.
For more information, see Sections 4 and 5 of Kipe et al. In particular, see Figures 20 and 21 for explicit best-fit models. - Luc Ta, Oct 27 2024

Examples

			For n = 2 there are exactly a(2) = 2 suitably connected Legendrian 2-mosaics, namely the empty mosaic and the Legendrian unknot with maximal Thurston-Bennequin invariant.
		

Crossrefs

Programs

  • Mathematica
    x[0] = o[0] = {{1}};
    x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
    o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}];
    legendrianSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1];
    Flatten[ParallelTable[legendrianSquare[n], {n, 1, 11}]] (* This program is adapted from Theorem 1 of Oh, Hong, Lee, and Lee (see Links, cf. A375354). - Luc Ta, Aug 20 2024 *)
  • Rust
    // See Margaret Kipe link

Extensions

a(7)-a(11) from Luc Ta, Aug 20 2024
a(12) from Alois P. Heinz, Aug 20 2024