A374947 a(n) is the number of suitably connected Legendrian n-Mosaics.
1, 2, 20, 1504, 948032, 5204262912, 254112496082944, 111879597850371293184, 448381477417976615986528256, 16469260582635747355818375736459264, 5571666891811926168753521842383673521864704, 17424018517043252553551626372130243982114254609186816
Offset: 1
Keywords
Examples
For n = 2 there are exactly a(2) = 2 suitably connected Legendrian 2-mosaics, namely the empty mosaic and the Legendrian unknot with maximal Thurston-Bennequin invariant.
Links
- Margaret Kipe, Rust
- Margaret Kipe, Samantha Pezzimenti, Leif Schaumann, Luc Ta, and Wing Hong Tony Wong, Bounds on the mosaic number of Legendrian knots, arXiv: 2410.08064 [math.GT], 2024.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- S. Pezzimenti and A. Pandey, Geography of Legendrian knot mosaics, Journal of Knot Theory and its Ramifications, 31 (2022), article no. 2250002, 1-22.
- Index entries for sequences related to knots
Crossrefs
Programs
-
Mathematica
x[0] = o[0] = {{1}}; x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}]; o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}]; legendrianSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1]; Flatten[ParallelTable[legendrianSquare[n], {n, 1, 11}]] (* This program is adapted from Theorem 1 of Oh, Hong, Lee, and Lee (see Links, cf. A375354). - Luc Ta, Aug 20 2024 *)
-
Rust
// See Margaret Kipe link
Extensions
a(7)-a(11) from Luc Ta, Aug 20 2024
a(12) from Alois P. Heinz, Aug 20 2024
Comments