cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374951 a(n) = Sum_{i+j+k=n, i,j,k >= 1} sigma(i) * sigma(j) * sigma(k).

Original entry on oeis.org

0, 0, 1, 9, 39, 120, 300, 645, 1261, 2262, 3825, 6160, 9471, 14178, 20376, 28965, 39600, 54066, 71145, 94248, 120140, 155310, 193116, 244560, 297819, 370860, 443710, 544554, 641655, 778458, 904800, 1085445, 1248762, 1483308, 1688052, 1991515, 2244375, 2626380
Offset: 1

Views

Author

Seiichi Manyama, Jul 25 2024

Keywords

Crossrefs

Column k=3 of A319083.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 25 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0],
       If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q,
       Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 3];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 14 2025, after Alois P. Heinz *)
  • PARI
    my(N=40, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k*x^k/(1-x^k))^3))
    
  • Python
    from sympy import divisor_sigma
    def A374951(n): return (60*sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))+divisor_sigma(n)*(9*n*(2*n-1)+1)-5*divisor_sigma(n,3)*(3*n-1))//144  # Chai Wah Wu, Jul 25 2024

Formula

G.f.: ( Sum_{k>=1} k * x^k/(1 - x^k) )^3 = ( Sum_{k>=1} x^k/(1 - x^k)^2 )^3.
a(n) = Sum_{i=1..n-2} sigma(i)*A000385(n-i-1). - Chai Wah Wu, Jul 25 2024
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 155520. - Vaclav Kotesovec, Sep 19 2024