cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A374974 a(n) = Sum_{k=1..n-1} sigma(k) * sigma_2(n-k).

Original entry on oeis.org

0, 1, 8, 29, 78, 170, 324, 579, 918, 1472, 2106, 3126, 4174, 5904, 7500, 10189, 12458, 16563, 19574, 25312, 29538, 37320, 42456, 53472, 59456, 73482, 81806, 99268, 108352, 132084, 141814, 170411, 184076, 217438, 231322, 276579, 289408, 340624, 361128, 419734
Offset: 1

Views

Author

Seiichi Manyama, Jul 26 2024

Keywords

Comments

Convolution of sigma with sigma_2.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, k]*DivisorSigma[2, n-k], {k, 1, n-1}], {n, 1, 50}] (* Vaclav Kotesovec, Sep 19 2024 *)
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 1)*sigma(n-k, 2));
    
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, k*x^k/(1-x^k))*sum(k=1, N, k^2*x^k/(1-x^k))))

Formula

G.f.: ( Sum_{k>=1} k * x^k/(1 - x^k) ) * ( Sum_{k>=1} k^2 * x^k/(1 - x^k) ).
Sum_{k=1..n} a(k) ~ Pi^2 * zeta(3) * n^5 / 360. - Vaclav Kotesovec, Sep 19 2024
Showing 1-1 of 1 results.