A375007 Numbers t which satisfy the equation: t mod k = floor((t - k)/k) mod k (1 <= k <= t) only for k = 1 and t.
1, 2, 3, 4, 8, 24, 28, 40, 60, 112, 316, 508, 568, 760, 796, 1212, 1228, 2616, 5296, 6220, 8016, 12456, 14620, 16888, 21772, 23116, 23356, 25656, 30312, 30712, 30808, 32716, 33720, 38328, 46072, 52816, 59112, 61728, 67960, 69808, 72972
Offset: 1
Keywords
Examples
Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i. The triangle begins: i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... ----------------------------------------- 1 | 1 2 | 1 1 3 | 1 0 1 4 | 1 0 0 1 5 | 1 1 0 0 1 6 | 1 1 0 0 0 1 7 | 1 0 1 0 0 0 1 8 | 1 0 0 0 0 0 0 1 9 | 1 1 0 1 0 0 0 0 1 10 | 1 1 0 0 0 0 0 0 0 1 11 | 1 0 1 0 1 0 0 0 0 0 1 12 | 1 0 1 0 0 0 0 0 0 0 0 1 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ... The j-th column has period j^2.
Programs
-
Maxima
(f(i,j):=mod((i-floor((i-j)/j)),j), (n:4, for t:4 thru 100000 step 4 do (for k:2 while f(t,k)#0 and k
Comments