A375062 Expansion of 1 / Sum_{k in Z} x^k / (1 - x^(5*k+1)).
1, -2, 2, -1, -2, 6, -9, 9, -4, -7, 22, -34, 33, -13, -25, 71, -103, 97, -39, -69, 196, -282, 263, -102, -182, 499, -703, 645, -248, -433, 1181, -1650, 1499, -568, -988, 2652, -3660, 3294, -1240, -2129, 5681, -7790, 6960, -2595, -4438, 11732, -15959, 14161, -5252
Offset: 0
Keywords
Programs
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/sum(k=-N, N, x^k/(1-x^(5*k+1))))
-
PARI
my(N=50, x='x+O('x^N)); Vec(prod(k=1, N, ((1-x^(5*k-1))*(1-x^(5*k-4)))^3/((1-x^k)*(1-x^(5*k)))))
Formula
G.f.: Product_{k>0} ((1-x^(5*k-1)) * (1-x^(5*k-4)))^3 / ((1-x^k) * (1-x^(5*k))).