A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.
1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0
Examples
0.133974596215561353236276829247063816528597373...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Regular Polygon.
- Eric Weisstein's World of Mathematics, Sagitta
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Tan[Pi/12]/2, 10, 100]]
-
PARI
tan(Pi/12)/2 \\ Charles R Greathouse IV, Feb 04 2025
-
PARI
polrootsreal(4*x^2-8*x+1)[1] \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024