cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375108 Expansion of Sum_{k in Z} x^(3*k) / (1 - x^(7*k+3)).

Original entry on oeis.org

1, -1, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 2, -1, 0, 2, -1, -2, 2, 0, 0, 0, 0, 2, 2, -2, 0, 0, 0, -2, 2, 0, 0, 2, 0, 0, 2, -2, -2, 2, 1, -2, 2, 2, 0, -1, 0, 0, 2, -4, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, -2, 0, 2, 0, -2, 2, 0, 0, 0, 0, -2, 2, 0, 2, 2, 0, -2, 2, 0, 0, -1, -2, 2, 2, -2, 0, 2, -1, -2, 2, 2, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=-N, N, x^(3*k)/(1-x^(7*k+3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-1))*(1-x^(7*k-6))/((1-x^(7*k-3))*(1-x^(7*k-4)))^2))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 * (1-x^(7*k-1)) * (1-x^(7*k-6)) / ((1-x^(7*k-3)) * (1-x^(7*k-4)))^2.