cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375106 Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 0, 1, 3, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 3, 1, 1, 2, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2/((1-x^(7*k-1))*(1-x^(7*k-6)))))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 / ((1-x^(7*k-1)) * (1-x^(7*k-6))).
G.f.: Sum_{k in Z} x^(3*k) / (1 - x^(7*k+1)).

A375107 Expansion of Sum_{k in Z} x^(2*k) / (1 - x^(7*k+3)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, -1, 1, 1, 0, 0, 2, 0, 0, 1, 1, -1, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, -1, 1, 0, 1, 1, 0, 0, 2, -1, 1, 2, 0, 0, 0, 0, 1, 1, 0, -1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 0, -1, 1, 1, 0, 0, -2, 1, 1, 1, 0, 3, -1, 0, 2, 1, -1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, -1, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=-N, N, x^(2*k)/(1-x^(7*k+3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2/((1-x^(7*k-3))*(1-x^(7*k-4)))))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 / ((1-x^(7*k-3)) * (1-x^(7*k-4))).
G.f.: Sum_{k in Z} x^(3*k) / (1 - x^(7*k+2)).

A375158 Expansion of Sum_{k in Z} x^(2*k) / (1 - x^(7*k+2)).

Original entry on oeis.org

1, 0, 2, -1, 2, 0, 2, 0, 0, 0, 2, 1, 2, -2, 2, 0, 2, 0, 0, 0, 3, 0, 2, -2, 2, 0, 2, 0, 0, 2, 2, 0, 0, -2, 2, 0, 3, 0, 2, 0, 2, 0, 2, -2, 0, 0, 2, 2, 0, 0, 2, -1, 4, -2, 2, 0, 2, 0, 0, 0, 2, 0, 2, -2, 2, 2, 2, 0, 0, 0, 0, 0, 2, -2, 4, 1, 2, 0, 0, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, -2, 2, 0, 2, -2, 2, 0, 1, 0, 2, 0, 4
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^(2*k)/(1-x^(7*k+2))))
    
  • PARI
    my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-3))*(1-x^(7*k-4))/((1-x^(7*k-2))*(1-x^(7*k-5)))^2))

Formula

G.f.: Product_{k>0} (1-x^(7*k))^2 * (1-x^(7*k-3)) * (1-x^(7*k-4)) / ((1-x^(7*k-2)) * (1-x^(7*k-5)))^2.
Showing 1-3 of 3 results.