cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A376277 The least increasing sequence starting with 1, such that the determinants of the Hankel matrices H1 = [a(0), a(1), ..., a(n); ...; a(n), a(n+1), ..., a(2*n)] and H2 = [a(1), a(2), ..., a(n+1); ...; a(n+1), a(n+2), ..., a(2*n+1)] are > 0.

Original entry on oeis.org

1, 2, 5, 13, 35, 98, 287, 883, 2858, 9708, 34411, 126337, 476767, 1836851, 7185420, 28420613, 113317776, 454468077, 1830556209, 7397188271, 29965426959, 121620119888, 494365414071, 2011965781648, 8196475452837, 33419092543257, 136353532725534, 556669705441210
Offset: 0

Views

Author

Thomas Scheuerle, Sep 23 2024

Keywords

Comments

A Stieltjes moment sequence by its definition.
The Hankel sequence transform gives {1, 1, 1, 1, 1, ...}.
The definition causes that the Hankel sequence transform starting with the second term of this sequence becomes {2, 1, 1, 1, ...}. This single exceptional 2 causes high complexity in the generating function and makes a nice combinatorial interpretation less likely, therefore the keyword "less" was considered.

Crossrefs

Cf. A000108 (We obtain the Catalan numbers if we use "least positive sequence" in the definition instead of "least increasing").
Cf. A375181 (Binomial transform).

Programs

  • PARI
    hankelok(s) = {my(m1=floor((#s+1)/2)); my(m2=floor(#s/2)); my(h1=matrix(m1,m1,x,y,s[x+y-1]));  my(h2=matrix(m2,m2,x,y,s[x+y])); return((matdet(h1) > 0) && (matdet(h2) > 0))}
    a(max_n) = {my(s=[1,2],k=3); while(#s < max_n, while(hankelok(concat(s,[k]))==0,k=k+1); s=concat(s,[k])); return(s)}
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-2*x/(1-(1/2)*x/(1-(1/2)*x/(1-2*x/(1-((1-sqrt(1-4*x))/(2*x))*x))))))
    
  • PARI
    a(n) = if(n<3, [1, 2, 5][n+1], sum(k=1, floor((n+1)/2), (binomial(n-k+1, k)+binomial(n-k, k-1)-binomial(n-k-3, k-4))*(-1)^(k+1)*a(n-k)))

Formula

G.f.: 1/(1-2*x/(1-(1/2)*x/(1-(1/2)*x/(1-2*x/(1-C(x)*x))))), C(x) is the generating function of the Catalan numbers.
G.f.: (1 - sqrt(1 - 4*x)*(-1 + x) - 5*x + 2*x^2)/(1 - 7*x + 11*x^2 + sqrt(1 - 4*x)*(1 - 3*x + x^2)).
(sqrt((x - 4)/x) + 2*x*(13 + (x - 7)*x) - 9)/(2*((x - 4)*(x - 3)*(x - 2)*x - 1)) = Sum_{k>=0} a(k)/x^(k+1).
a(n) = Sum_{k=1..floor((n+1)/2)} (binomial(n-k+1, k) + binomial(n-k, k-1) - binomial(n-k-3, k-4))*(-1)^(k+1)*a(n-k), for n >= 3.
a(n) = Sum_{k=1..floor((n+1)/2)} (A034807(n+1, k) - A011973(n+1, k-4))*(-1)^(k+1)*a(n-k), for n >= 3.
Showing 1-1 of 1 results.