cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375187 Number of unitary square divisors of n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 2, 2, 8, 8, 4, 4, 4, 4, 4, 4, 8, 8, 16, 4, 4, 4, 16, 16, 16, 8, 16, 16, 32, 32, 16, 4, 16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 16, 32, 128, 128, 256, 256, 128, 32, 64, 64, 256, 64, 16, 4, 16, 16, 64, 64, 64, 128, 128, 32, 64, 64, 128, 128
Offset: 0

Views

Author

Amiram Eldar, Aug 03 2024

Keywords

Comments

Unitary analog of A046951(n!) = A055993(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 100, 0]
  • PARI
    a(n) = vecprod(apply(x -> 1 << (1 - x%2), factor(n!)[,2]));
    
  • Python
    from collections import Counter
    from sympy import factorint
    def A375187(n): return 1<Chai Wah Wu, Aug 03 2024

Formula

a(n) = A056624(n!).

A056630 a(n) = A055993(n) - A034444(A056627(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 4, 8, 22, 22, 28, 28, 56, 88, 120, 120, 172, 172, 284, 292, 584, 584, 848, 1136, 2272, 2656, 4304, 4304, 5312, 5312, 6080, 6112, 12992, 16256, 19376, 19376, 38752, 43136, 47936, 47936, 63936, 63936, 100672, 132928, 278528, 278528
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name, "Number of non-unitary square divisors of n!." was incorrect. See A375188 for the correct sequence with this name. - Amiram Eldar, Aug 03 2024

Examples

			example: a(10) = A055993(10) - A034444(A056627(10)) = 30 - A034444(720) = 30 - 8 = 22.
		

Crossrefs

Programs

  • Mathematica
    A046951[n_] := Length[Select[Divisors[n], IntegerQ[Sqrt[#]] &]]; A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[A046951[n!] - 2^(PrimeNu[Sqrt[A008833[n!]]/A055229[n!]]), {n,1,50}] (* G. C. Greubel, May 20 2017 *)
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, 1] := 1; f2[p_, e_] := If[EvenQ[e], p^(e/2), p^((e-3)/2)]; ; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - 2^PrimeNu[Times @@ f2 @@@ fct]; Array[a, 60] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, 1 + f[i, 2]\2) - 2^omega(prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^if(f[i, 2]%2, (f[i, 2]-3)/2, f[i, 2]/2))));} \\ Amiram Eldar, Aug 03 2024

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Aug 03 2024
Showing 1-2 of 2 results.