cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375188 Number of non-unitary square divisors of n!.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 6, 10, 22, 22, 32, 32, 68, 92, 124, 124, 172, 172, 284, 296, 596, 596, 848, 1136, 2288, 2680, 4352, 4352, 5344, 5344, 6128, 6140, 13040, 16304, 19424, 19424, 38864, 43184, 47984, 47984, 63992, 63992, 100784, 133024, 278656, 278656, 331520
Offset: 0

Views

Author

Amiram Eldar, Aug 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; Array[a, 60, 0]
  • PARI
    a(n) = {my(e = factor(n!)[,2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e));}
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A375188(n):
        f = sum((Counter(factorint(m)) for m in range(2,n+1)),start=Counter()).values()
        return prod((e>>1)+1 for e in f)-(1<Chai Wah Wu, Aug 04 2024

Formula

a(n) = A056626(n!).

A056629 a(n) = A034444(A056627(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 4, 4, 8, 8, 8, 8, 16, 8, 8, 8, 8, 8, 16, 8, 16, 16, 16, 16, 32, 32, 64, 64, 64, 64, 64, 32, 64, 64, 64, 64, 128, 64, 64, 64, 64, 64, 128, 128, 256, 256, 256, 256, 256, 128, 256, 256, 256, 256, 256, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name, "Number of unitary square divisors of n!." was incorrect. See A375187 for the correct sequence with this name. - Amiram Eldar, Aug 03 2024

Examples

			a(10) = A034444(A056627(10)) = A034444(720) = 8.
		

Crossrefs

Programs

  • Mathematica
    A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]]; Table[2^(PrimeNu[Sqrt[A008833[n!]]/A055229[n!]]), {n, 1, 50}] (* G. C. Greubel, May 19 2017 *)
    f[p_, 1] := 1; f[p_, e_] := If[EvenQ[e], p^(e/2), p^((e-3)/2)]; a[1] = 1; a[n_] := 2^PrimeNu[Times @@ f @@@ FactorInteger[n!]]; Array[a, 66] (* Amiram Eldar, Aug 03 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); 2^omega(prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^if(f[i, 2]%2, (f[i, 2]-3)/2, f[i, 2]/2))));} \\ Amiram Eldar, Aug 03 2024

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Aug 03 2024
Showing 1-2 of 2 results.