A375188 Number of non-unitary square divisors of n!.
0, 0, 0, 0, 1, 1, 2, 2, 6, 10, 22, 22, 32, 32, 68, 92, 124, 124, 172, 172, 284, 296, 596, 596, 848, 1136, 2288, 2680, 4352, 4352, 5344, 5344, 6128, 6140, 13040, 16304, 19424, 19424, 38864, 43184, 47984, 47984, 63992, 63992, 100784, 133024, 278656, 278656, 331520
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); a[0] = a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n!]) - Times @@ f2 @@@ fct; Array[a, 60, 0]
-
PARI
a(n) = {my(e = factor(n!)[,2]); vecprod(apply(x -> x\2 + 1, e)) - vecprod(apply(x -> 1 << (1 - x%2), e));}
-
Python
from math import prod from collections import Counter from sympy import factorint def A375188(n): f = sum((Counter(factorint(m)) for m in range(2,n+1)),start=Counter()).values() return prod((e>>1)+1 for e in f)-(1<
Chai Wah Wu, Aug 04 2024
Formula
a(n) = A056626(n!).
Comments