cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375253 Expansion of (1 - 2*x + 2*x^2)/(1 - 2*x - 3*x^2)^(7/2).

Original entry on oeis.org

1, 5, 30, 140, 630, 2646, 10710, 41910, 159885, 597025, 2190188, 7914270, 28230020, 99567300, 347720040, 1203777072, 4135047615, 14105322315, 47813634330, 161154659820, 540353553894, 1803226621350, 5991410183850, 19827295283250, 65371101643575
Offset: 0

Views

Author

Seiichi Manyama, Aug 07 2024

Keywords

Crossrefs

Column k=4 of A091869 (with a different offset).

Programs

  • Mathematica
    a[n_]:=(1+n)(2+n)(3+n)(4+n)Hypergeometric2F1[(1-n)/2,-n/2,2,4]/24; Array[a,25,0] (* Stefano Spezia, Aug 07 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-2*x+2*x^2)/(1-2*x-3*x^2)^(7/2))

Formula

a(n) = (binomial(n+4,3)/4) * Sum_{k=0..floor(n/2)} binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = (binomial(n+4,3)/4) * A005717(n+1).
a(n) = ((n+4)/(n*(n+2))) * ((2*n+1)*a(n-1) + 3*(n+3)*a(n-2)).
a(n) = (1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([(1-n)/2, -n/2], [2], 4)/24. - Stefano Spezia, Aug 07 2024

A375260 Expansion of (1 - 3*x + 9*x^2 - 7*x^3)/(1 - 2*x - 3*x^2)^(7/2).

Original entry on oeis.org

1, 4, 30, 140, 665, 2856, 11844, 47160, 182655, 690580, 2560558, 9337692, 33573995, 119246960, 419034360, 1458687312, 5035531563, 17253821340, 58723235970, 198655153620, 668338862499, 2237229875496, 7454611712100, 24734393119800, 81748883914425
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-3*x+9*x^2-7*x^3)/(1-2*x-3*x^2)^(7/2))

Formula

a(n) = binomial(n+3,3) * Sum_{k=0..floor(n/2)} binomial(n,n-2*k) * binomial(2*k,k).
a(n) = binomial(n+3,3) * A002426(n).
a(n) = A132885(n+6,3).
a(n) = ((n+3)/n^2) * ((2*n-1)*a(n-1) + 3*(n+2)*a(n-2)).
Showing 1-2 of 2 results.