cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A387476 a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 2, 2, 4, 16, 12, 72, 88, 264, 608, 1056, 3280, 5504, 15328, 31904, 71104, 175488, 358080, 900736, 1925248, 4518016, 10404864, 23138304, 54970624, 122038272, 286077440, 651510272, 1492685824, 3465687040, 7876488192, 18322630656, 41904609280, 96788580352, 223335882752
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^k* Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^2-2*x^3)^2 - 16*x^5).

A387477 a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(k,n-3*k)^2.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 4, 16, 4, 8, 72, 72, 24, 256, 576, 288, 816, 3200, 3264, 3104, 14432, 25728, 20672, 58752, 157120, 173184, 257152, 809600, 1296000, 1466368, 3814400, 8247296, 10202368, 18360320, 46069760, 71264768, 100919808, 238362624, 457049088, 635490304
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(k,n-3*k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[2^k*Binomial[k,n-3*k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(k, n-3*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^3-2*x^4)^2 - 16*x^7).

A387509 a(n) = Sum_{k=0..floor(n/3)} 2^(n-k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 2, 4, 12, 48, 176, 592, 2016, 7168, 25920, 93440, 336384, 1216768, 4425216, 16143360, 58993664, 215965696, 792154112, 2910720000, 10710884352, 39464009728, 145575002112, 537583419392, 1987177611264, 7352243781632, 27224715689984, 100888181211136
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Cf. A375276.

Programs

  • Magma
    [(&+[2^(n-k) * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n-2*k,k]^2,{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^(n-k)*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x-4*x^3)^2 - 32*x^4).

A387550 a(n) = (1/2) * Sum_{k=0..n} 2^k * binomial(2*k+2,2*n-2*k+1).

Original entry on oeis.org

1, 4, 16, 72, 316, 1376, 6016, 26304, 114960, 502464, 2196224, 9599360, 41957312, 183389184, 801566720, 3503527936, 15313395968, 66932560896, 292552200192, 1278701856768, 5589014330368, 24428744679424, 106774384771072, 466694846300160, 2039853285314560
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2025

Keywords

Crossrefs

Cf. A375276.

Programs

  • Magma
    [&+[2^k * Binomial(2*k+2, 2*n-2*k+1)/2: k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*k+2,2*n-2*k+1]/2,{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*k+2, 2*n-2*k+1))/2;
    

Formula

G.f.: B(x)^2, where B(x) is the g.f. of A375276.
G.f.: 1/((1-2*x-2*x^2)^2 - 16*x^3).
a(n) = 4*a(n-1) + 8*a(n-3) - 4*a(n-4).
Showing 1-4 of 4 results.