cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375292 Expansion of 1/sqrt((1 - x + x^3)^2 + 4*x^4).

Original entry on oeis.org

1, 1, 1, 0, -3, -8, -14, -15, 1, 51, 146, 261, 286, -24, -1029, -2975, -5375, -5930, 591, 22014, 63886, 115947, 128183, -14595, -486466, -1413161, -2569868, -2840890, 361667, 10972167, 31861581, 57980426, 64018181, -8985428, -250991300, -727998021, -1324662165
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt((1-x+x^3)^2+4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)^2);

Formula

n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) - (2*n-3)*a(n-3) - 2*(n-2)*a(n-4) - (n-3)*a(n-6).
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)^2.

A387508 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k)^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 19, 33, 55, 109, 243, 529, 1071, 2093, 4179, 8673, 18255, 37981, 77923, 159649, 329935, 687117, 1432403, 2977505, 6179215, 12841597, 26757059, 55840033, 116551119, 243209325, 507658803, 1060551137, 2217515151, 4639042909, 9707403811
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(n-3*k, k)^2: k in [0..Floor(n/4)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n-3*k, k]^2,{k,0,Floor[n/4]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-x-2*x^4)^2 - 8*x^5).

A375290 Expansion of 1/((1 - x + x^4)^2 + 4*x^5).

Original entry on oeis.org

1, 2, 3, 4, 3, -4, -21, -52, -98, -144, -143, 0, 440, 1368, 2891, 4752, 5831, 3438, -7330, -33384, -81044, -148610, -211283, -197280, 39748, 732646, 2152660, 4423184, 7089816, 8360270, 4071395, -13171888, -53480919, -125422768, -224380607, -309560644, -268524883
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x+x^4)^2+4*x^5))
    
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(2*n-6*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) - a(n-2) - 2*a(n-4) - 2*a(n-5) - a(n-8).
a(n) = (1/2) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(2*n-6*k+2,2*k+1).
Showing 1-3 of 3 results.