cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375309 Number of walks of length n along the edges of a dodecahedron graph between two vertices at distance two.

Original entry on oeis.org

0, 0, 1, 1, 7, 11, 51, 105, 399, 967, 3299, 8789, 28271, 79443, 247507, 716353, 2193583, 6452639, 19575075, 58095597, 175350735, 522947755, 1574075603, 4706879321, 14146450127, 42363311991, 127217598691, 381275400325, 1144458922159
Offset: 0

Views

Author

Miquel A. Fiol, Aug 11 2024

Keywords

Crossrefs

Cf. A054883.

Programs

  • Mathematica
    LinearRecurrence[{2, 10, -16, -25, 30}, {0, 0, 1, 1, 7, 11}, 30] (* Amiram Eldar, Aug 13 2024 *)

Formula

For n>=6, a(n) = 2*a(n-1) + 10*a(n-2) - 16*a(n-3) - 25*a(n-4) + 30*a(n-5).
From Stefano Spezia, Aug 13 2024: (Start)
G.f.: x^2*(1 - x - 5*x^2 + 3*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)*(1 - 5*x^2)).
a(n) = (3*5^(n/2)*(1 + (-1)^n) + 3^(1+n) + (-1)^n*2^(1+n) - 5)/60 for n > 0. (End)