A375309 Number of walks of length n along the edges of a dodecahedron graph between two vertices at distance two.
0, 0, 1, 1, 7, 11, 51, 105, 399, 967, 3299, 8789, 28271, 79443, 247507, 716353, 2193583, 6452639, 19575075, 58095597, 175350735, 522947755, 1574075603, 4706879321, 14146450127, 42363311991, 127217598691, 381275400325, 1144458922159
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,10,-16,-25,30).
Crossrefs
Cf. A054883.
Programs
-
Mathematica
LinearRecurrence[{2, 10, -16, -25, 30}, {0, 0, 1, 1, 7, 11}, 30] (* Amiram Eldar, Aug 13 2024 *)
Formula
For n>=6, a(n) = 2*a(n-1) + 10*a(n-2) - 16*a(n-3) - 25*a(n-4) + 30*a(n-5).
From Stefano Spezia, Aug 13 2024: (Start)
G.f.: x^2*(1 - x - 5*x^2 + 3*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)*(1 - 5*x^2)).
a(n) = (3*5^(n/2)*(1 + (-1)^n) + 3^(1+n) + (-1)^n*2^(1+n) - 5)/60 for n > 0. (End)