cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375365 Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^3) ).

Original entry on oeis.org

1, -2, 4, -3, 6, -2, 14, 3, 32, 35, 92, 142, 309, 541, 1061, 1970, 3770, 7067, 13423, 25328, 47925, 90546, 171268, 323704, 612034, 1157045, 2187523, 4135499, 7818493, 14781207, 27944635, 52830674, 99879267, 188826659, 356986436, 674901081, 1275934925, 2412219595
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x)^2(1-x^2(1+x)^3)),{x,0,40}],x] (* or *) LinearRecurrence[{-2,0,5,10,10,5,1},{1,-2,4,-3,6,-2,14},40] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^3)))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k-2, n-2*k));

Formula

a(n) = -2*a(n-1) + 5*a(n-3) + 10*a(n-4) + 10*a(n-5) + 5*a(n-6) + a(n-7).
a(n) = Sum_{k=0..floor(n/2)} binomial(3*k-2,n-2*k).

A077883 Expansion of (1-x)^(-1)/(1-x^2+x^3).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 2, -1, 3, -2, 5, -4, 8, -8, 13, -15, 22, -27, 38, -48, 66, -85, 115, -150, 201, -264, 352, -464, 617, -815, 1082, -1431, 1898, -2512, 3330, -4409, 5843, -7738, 10253, -13580, 17992, -23832, 31573, -41823, 55406, -73395, 97230, -128800, 170626, -226029, 299427, -396654
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-x^2+x^3),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,-2,1},{1,1,2,1},60] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    Vec((1-x)^(-1)/(1-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n\2, binomial(k-1, n-2*k)); \\ Seiichi Manyama, Aug 14 2024

Formula

G.f.: (1-x)^(-1)/(1-x^2+x^3).
a(n) = a(n-1) + a(n-2) - 2*a(n-3) + a(n-4) with a(0)=1, a(1)=1, a(2)=2, a(3)=1. - Harvey P. Dale, Mar 26 2012
a(n) = (-1)^n * Sum_{k=0..floor(n/2)} binomial(k-1,n-2*k). - Seiichi Manyama, Aug 14 2024
Showing 1-2 of 2 results.