A375384 Triangular numbers that are sandwiched between two squarefree semiprimes.
300, 780, 2628, 3240, 3828, 5460, 13530, 18528, 19110, 22578, 25878, 31878, 32640, 37128, 49770, 56280, 64980, 72390, 73920, 78210, 103740, 105570, 115440, 137550, 159330, 161028, 277140, 288420, 316410, 335790, 370230, 386760, 416328, 472878, 541320, 664128
Offset: 1
Keywords
Examples
300 (24th triangular number) between 299 = 13 * 23 and 301 = 7 * 43. 780 (39th triangular number) between 779 = 19 * 41 and 781 = 11 * 71. 2628 (72nd triangular number) between 2627 = 37 * 71 and 2629 = 11 * 239.
Programs
-
Maple
select(t -> numtheory:-bigomega(t+1)=2 and numtheory:-bigomega(t-1)=2 and numtheory:-issqrfree(t+1) and numtheory:-issqrfree(t-1), [seq(i*(i+1)/2, i=1..2000)]); # Robert Israel, Sep 02 2024
-
Mathematica
q[n_] := FactorInteger[n][[;; , 2]] == {1, 1}; Select[Accumulate[Range[1100]], And @@ q /@ (# + {-1, 1}) &] (* Amiram Eldar, Aug 13 2024 *)
-
PARI
issp(k) = my(f=factor(k)); (bigomega(f)==2) && issquarefree(f); \\ A006881 lista(nn) = my(list=List()); for (n=2, nn, my(k=n*(n+1)/2); if (issp(k-1) && issp(k+1), listput(list, k))); Vec(list); \\ Michel Marcus, Sep 01 2024
Formula
a(n) == 0 (mod 6). - Hugo Pfoertner, Aug 27 2024
Comments