A375443
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^3 )/(1-2*x).
Original entry on oeis.org
1, 1, 2, 6, 21, 77, 290, 1122, 4462, 18210, 76028, 323524, 1398071, 6115707, 27008516, 120162616, 537702116, 2417043444, 10904533054, 49343555890, 223851302500, 1017798552096, 4637127493554, 21167261603078, 96799606576699, 443460169286639, 2035144213216892, 9355941004378324
Offset: 0
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 31*x^4 + 117*x^5 + 459*x^6 + 1835*x^7 + 7449*x^8 + 30711*x^9 + 128601*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^3 )/(1-2*x).
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 58*x^4 + 220*x^5 + 854*x^6 + 3384*x^7 + 13693*x^8 + 56546*x^9 + 237897*x^10 + ...
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 117*x^4 + 459*x^5 + 1835*x^6 + 7449*x^7 + 30711*x^8 + ... + A375453(n+1)*x^n + ...
SPECIFIC VALUES.
Given the radius of convergence r = 0.2051227438492708078605991264519...,
A(r) = 1.6956207695598620574163671001175353426181793882085...
where r = (1-2*r)^3 and A(r) = 1/(1-2*r).
A(1/5) = 1.51884977058839576453094931523796453209831069839...
where A(1/5)^2 = (5/3)*A(5/27).
A(1/6) = 1.29543251347110009761686143135328534086163706795...
where A(1/6)^2 = (6/4)*A(6/64).
A(1/7) = 1.22025427535592887335278669533719663766721910803...
where A(1/7)^2 = (7/5)*A(7/125).
A(1/10) = 1.12934836581956838019397695630366800332615427708...
where A(1/10)^2 = (10/8)*A(10/512).
-
{a(n) = my(A=[1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^3 )/(1-2*x) - Ax^2, #A-1) ); H=Ax; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A375454
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 ).
Original entry on oeis.org
1, 4, 14, 56, 253, 1188, 5598, 26456, 126278, 611640, 3010948, 15058064, 76399263, 392524428, 2038142346, 10674131464, 56281299098, 298286598920, 1586959692508, 8466559886448, 45260129274602, 242296862848648, 1298487003814300, 6964374684442416, 37378818578434617, 200745991803248388
Offset: 1
G.f.: A(x) = x + 4*x^2 + 14*x^3 + 56*x^4 + 253*x^5 + 1188*x^6 + 5598*x^7 + 26456*x^8 + 126278*x^9 + 611640*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^4 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 44*x^4 + 224*x^5 + 1150*x^6 + 5968*x^7 + 30920*x^8 + 159296*x^9 + 818013*x^10 + ...
(A(x)/x)^(1/2) = 1 + 2*x + 5*x^2 + 18*x^3 + 78*x^4 + 348*x^5 + 1551*x^6 + 6982*x^7 + 32114*x^8 + 151620*x^9 + 734458*x^10 + ...
(A(x)/x)^(1/4) = 1 + x + 2*x^2 + 7*x^3 + 30*x^4 + 130*x^5 + 561*x^6 + 2460*x^7 + 11115*x^8 + 51948*x^9 + 250551*x^10 + ...
x/Series_Reversion( A( x^4/(1-2*x)^4 )^(1/4) ) = 1 + 2*x + x^4 - 2*x^8 + 9*x^12 - 46*x^16 + 251*x^20 - 1467*x^24 + 9001*x^28 - 56961*x^32 + 369035*x^36 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.1736940609090204697398931237543698538457793088071...
A(t) = 3/5 at t = 0.1683900940132911881249251740473132322447213579710...
A(t) = 1/2 at t = 0.1619792168710406277922262531667140037108384145069...
A(t) = 2/5 at t = 0.1519644942152899698264943158671103683281536948439...
A(t) = 1/4 at t = 0.1256102247935771858127425480259396391143977190820...
A(1/6) = 0.56831064552606196969057398988138945640151282529741...
where A(1/6)^2 = A(9/64).
A(1/7) = 0.33620864108171743638518920200481354359529601205566...
where A(1/7)^2 = A(49/625).
A(1/8) = 0.24749365203461325611367946855098276802746512221191...
where A(1/8)^2 = A(4/81).
A(1/9) = 0.19726025709005021216217281111162473370492543981591...
where A(1/9)^2 = A(81/2401).
A(1/10) = 0.1643908422523431149995416239752018754267879073230...
where A(1/10)^2 = A(25/1024).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^4 ) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A375455
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^5 ).
Original entry on oeis.org
1, 5, 20, 90, 470, 2566, 13885, 74435, 400530, 2183930, 12112167, 68351005, 392055575, 2281947435, 13450584580, 80110426698, 481032299830, 2905955107950, 17629836770715, 107254895106265, 653597751574541, 3986386422481665, 24321398369358070, 148386468804372420, 905156432977350225
Offset: 1
G.f.: A(x) = x + 5*x^2 + 20*x^3 + 90*x^4 + 470*x^5 + 2566*x^6 + 13885*x^7 + 74435*x^8 + 400530*x^9 + 2183930*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^5 ).
RELATED SERIES.
A(x)^2 = x^2 + 10*x^3 + 65*x^4 + 380*x^5 + 2240*x^6 + 13432*x^7 + 80330*x^8 + 474960*x^9 + 2783590*x^10 + ...
(A(x)/x)^(1/5) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 205*x^5 + 989*x^6 + 4785*x^7 + 23881*x^8 + 124245*x^9 + 673020*x^10 + ...
x/Series_Reversion( A( x^5/(1-2*x)^5 )^(1/5) ) = 1 + 2*x + x^5 - 3*x^10 + 18*x^15 - 124*x^20 + 925*x^25 - 7372*x^30 + 61466*x^35 - 528678*x^40 + 4656736*x^45 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.1535987460670222421700476984635848015956844093413...
A(t) = 3/5 at t = 0.1494534252284609931621062683479802340037678508370...
A(t) = 1/2 at t = 0.1443598468225794843508026942502138500132562159005...
A(t) = 2/5 at t = 0.1362812665991487577089709044456104123756230678872...
A(t) = 1/4 at t = 0.1144692674833411472616636812900607840273720167873...
A(1/7) = 0.477612316813393143429515106540189409592882329142...
where A(1/7)^2 = A(343/3125).
A(1/8) = 0.309560069127977498956512592550239740786137843207...
where A(1/8)^2 = A(16/243).
A(1/9) = 0.234151149075763124751821214511435118422621268792...
where A(1/9)^2 = A(729/16807).
A(1/10) = 0.189302960006249918030251616127177047165765112599...
where A(1/10)^2 = A(125/4096).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^5 ) - Ax^2, #A) ); H=Ax; A[n+1]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments