A375453
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^3 ).
Original entry on oeis.org
1, 3, 9, 31, 117, 459, 1835, 7449, 30711, 128601, 546537, 2354139, 10260492, 45173868, 200578692, 896865572, 4033380894, 18224524458, 82664886074, 376161628302, 1716301466139, 7848924260901, 35966629306221, 165109474283847, 759210907786198, 3496438156668822, 16126158739138860
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 31*x^4 + 117*x^5 + 459*x^6 + 1835*x^7 + 7449*x^8 + 30711*x^9 + 128601*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^3 ).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 27*x^4 + 116*x^5 + 501*x^6 + 2178*x^7 + 9491*x^8 + 41424*x^9 + 181293*x^10 + ...
(A(x)/x)^(1/3) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 77*x^5 + 290*x^6 + 1122*x^7 + 4462*x^8 + 18210*x^9 + ... + A375443(n)*x^n + ...
x/Series_Reversion( A( x^2/(1-2*x) )^(1/2) ) = 1 + x + 2*x^2 - 2*x^4 + 6*x^6 - 20*x^8 + 70*x^10 - 263*x^12 + 1044*x^14 - 4263*x^16 + 17762*x^18 + ...
x/Series_Reversion( A( x^3/(1-2*x)^3 )^(1/3) ) = 1 + 2*x + x^3 - x^6 + 3*x^9 - 10*x^12 + 34*x^15 - 124*x^18 + 482*x^21 - 1931*x^24 + 7893*x^27 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.201772636312778304679687617697508690090653188...
A(t) = 3/5 at t = 0.194614960496736155296642077884228463225576089...
A(t) = 1/2 at t = 0.186135869221980538627401571340819246192140850...
A(t) = 2/5 at t = 0.173143830263370608074654087902797631449309857...
A(t) = 1/4 at t = 0.140069990039210460387276300843591158073987855...
A(1/5) = 0.700768312277362449514797370811301885385349818...
where A(1/5)^2 = A(5/27).
A(1/6) = 0.362320684925221039201199651574198595785551012...
where A(1/6)^2 = A(6/64).
A(1/7) = 0.259569089568076471080673806323871020166140312...
where A(1/7)^2 = A(7/125).
A(1/10) = 0.14404022241542053703979110789205898915122135...
where A(1/10)^2 = A(10/512).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^3 ) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A375444
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
Original entry on oeis.org
1, 1, 2, 7, 30, 130, 561, 2460, 11115, 51948, 250551, 1240828, 6274580, 32231322, 167460901, 876998437, 4617448333, 24395086617, 129162020323, 684753458054, 3633159683023, 19287528099428, 102441443882448, 544372928359375, 2894576197980724, 15402989792369740, 82040643327234351
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 30*x^4 + 130*x^5 + 561*x^6 + 2460*x^7 + 11115*x^8 + 51948*x^9 + 250551*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^4 )/(1-2*x).
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 78*x^4 + 348*x^5 + 1551*x^6 + 6982*x^7 + 32114*x^8 + 151620*x^9 + 734458*x^10 + ...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 253*x^4 + 1188*x^5 + 5598*x^6 + 26456*x^7 + 126278*x^8 + ... + A375454(n+1)*x^n + ...
SPECIFIC VALUES.
Given the radius of convergence r = 0.17610056436947880725475...,
A(r) = 1.5436890126920763615708559718017479865252032976509...
where r = (1-2*r)^4 and A(r) = 1/(1-2*r).
A(1/6) = 1.35888986768048814311476385141914227984504826245...
where A(1/6)^2 = (3/2)*A(9/64).
A(1/7) = 1.23858760007712401376241920277473621006326963714...
where A(1/7)^2 = (7/5)*A(49/625).
A(1/8) = 1.18621527667665867031082807873688257681814274612...
where A(1/8)^2 = (4/3)*A(4/81).
A(1/9) = 1.15430486498931766438966249826580193821574473318...
where A(1/9)^2 = (9/7)*A(81/2401).
A(1/10) = 1.1323205915354275720071052412999606676975412945...
where A(1/10)^2 = (5/4)*A(25/1024).
-
terms = 27; A[] = 1; Do[A[x]=Sqrt[A[x^2/(1-2*x)^4 ]/(1-2*x)] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 21 2025 *)
-
{a(n) = my(A=[1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^4 )/(1-2*x) - Ax^2, #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A375445
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^5 )/(1-2*x).
Original entry on oeis.org
1, 1, 2, 8, 41, 205, 989, 4785, 23881, 124245, 673020, 3771678, 21702164, 127311556, 756930002, 4539680854, 27367146987, 165407567379, 1000581963363, 6051411131431, 36569087782730, 220760294880122, 1331294835476618, 8021165000866546, 48296514171243436, 290695754850732916
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 205*x^5 + 989*x^6 + 4785*x^7 + 23881*x^8 + 124245*x^9 + 673020*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^5 )/(1-2*x).
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 102*x^4 + 524*x^5 + 2616*x^6 + 13024*x^7 + 66249*x^8 + 348026*x^9 + 1889737*x^10 + ...
A(x)^5 = 1 + 5*x + 20*x^2 + 90*x^3 + 470*x^4 + 2566*x^5 + 13885*x^6 + 74435*x^7 + 400530*x^8 + ... + A375455(n+1)*x^n + ...
SPECIFIC VALUES.
Given the radius of convergence r = 0.15543026888105788743996...,
A(r) = 1.4510850920547193207944317544312912656627353873916...
where r = (1-2*r)^5 and A(r) = 1/(1-2*r).
A(1/7) = 1.273018489928554436323320513425747043274176403249...
where A(1/7)^2 = (7/5)*A(343/3125).
A(1/8) = 1.198855898496093050319216983995020709132914678012...
where A(1/8)^2 = (4/3)*A(16/243).
A(1/9) = 1.160774237134743051625929742274648689798420066384...
where A(1/9)^2 = (9/7)*A(729/16807).
A(1/10) = 1.136139033822992899751347322772302396437733019439...
where A(1/10)^2 = (5/4)*A(125/4096).
-
terms = 26; A[] = 1; Do[A[x] = Sqrt[A[x^2 /(1 - 2x)^5]/(1 - 2x)] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 11 2025 *)
-
{a(n) = my(A=[1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^5 )/(1-2*x) - Ax^2, #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments