A375453
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^3 ).
Original entry on oeis.org
1, 3, 9, 31, 117, 459, 1835, 7449, 30711, 128601, 546537, 2354139, 10260492, 45173868, 200578692, 896865572, 4033380894, 18224524458, 82664886074, 376161628302, 1716301466139, 7848924260901, 35966629306221, 165109474283847, 759210907786198, 3496438156668822, 16126158739138860
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 31*x^4 + 117*x^5 + 459*x^6 + 1835*x^7 + 7449*x^8 + 30711*x^9 + 128601*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^3 ).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 27*x^4 + 116*x^5 + 501*x^6 + 2178*x^7 + 9491*x^8 + 41424*x^9 + 181293*x^10 + ...
(A(x)/x)^(1/3) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 77*x^5 + 290*x^6 + 1122*x^7 + 4462*x^8 + 18210*x^9 + ... + A375443(n)*x^n + ...
x/Series_Reversion( A( x^2/(1-2*x) )^(1/2) ) = 1 + x + 2*x^2 - 2*x^4 + 6*x^6 - 20*x^8 + 70*x^10 - 263*x^12 + 1044*x^14 - 4263*x^16 + 17762*x^18 + ...
x/Series_Reversion( A( x^3/(1-2*x)^3 )^(1/3) ) = 1 + 2*x + x^3 - x^6 + 3*x^9 - 10*x^12 + 34*x^15 - 124*x^18 + 482*x^21 - 1931*x^24 + 7893*x^27 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.201772636312778304679687617697508690090653188...
A(t) = 3/5 at t = 0.194614960496736155296642077884228463225576089...
A(t) = 1/2 at t = 0.186135869221980538627401571340819246192140850...
A(t) = 2/5 at t = 0.173143830263370608074654087902797631449309857...
A(t) = 1/4 at t = 0.140069990039210460387276300843591158073987855...
A(1/5) = 0.700768312277362449514797370811301885385349818...
where A(1/5)^2 = A(5/27).
A(1/6) = 0.362320684925221039201199651574198595785551012...
where A(1/6)^2 = A(6/64).
A(1/7) = 0.259569089568076471080673806323871020166140312...
where A(1/7)^2 = A(7/125).
A(1/10) = 0.14404022241542053703979110789205898915122135...
where A(1/10)^2 = A(10/512).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^3 ) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A375454
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^4 ).
Original entry on oeis.org
1, 4, 14, 56, 253, 1188, 5598, 26456, 126278, 611640, 3010948, 15058064, 76399263, 392524428, 2038142346, 10674131464, 56281299098, 298286598920, 1586959692508, 8466559886448, 45260129274602, 242296862848648, 1298487003814300, 6964374684442416, 37378818578434617, 200745991803248388
Offset: 1
G.f.: A(x) = x + 4*x^2 + 14*x^3 + 56*x^4 + 253*x^5 + 1188*x^6 + 5598*x^7 + 26456*x^8 + 126278*x^9 + 611640*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^4 ).
RELATED SERIES.
A(x)^2 = x^2 + 8*x^3 + 44*x^4 + 224*x^5 + 1150*x^6 + 5968*x^7 + 30920*x^8 + 159296*x^9 + 818013*x^10 + ...
(A(x)/x)^(1/2) = 1 + 2*x + 5*x^2 + 18*x^3 + 78*x^4 + 348*x^5 + 1551*x^6 + 6982*x^7 + 32114*x^8 + 151620*x^9 + 734458*x^10 + ...
(A(x)/x)^(1/4) = 1 + x + 2*x^2 + 7*x^3 + 30*x^4 + 130*x^5 + 561*x^6 + 2460*x^7 + 11115*x^8 + 51948*x^9 + 250551*x^10 + ...
x/Series_Reversion( A( x^4/(1-2*x)^4 )^(1/4) ) = 1 + 2*x + x^4 - 2*x^8 + 9*x^12 - 46*x^16 + 251*x^20 - 1467*x^24 + 9001*x^28 - 56961*x^32 + 369035*x^36 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.1736940609090204697398931237543698538457793088071...
A(t) = 3/5 at t = 0.1683900940132911881249251740473132322447213579710...
A(t) = 1/2 at t = 0.1619792168710406277922262531667140037108384145069...
A(t) = 2/5 at t = 0.1519644942152899698264943158671103683281536948439...
A(t) = 1/4 at t = 0.1256102247935771858127425480259396391143977190820...
A(1/6) = 0.56831064552606196969057398988138945640151282529741...
where A(1/6)^2 = A(9/64).
A(1/7) = 0.33620864108171743638518920200481354359529601205566...
where A(1/7)^2 = A(49/625).
A(1/8) = 0.24749365203461325611367946855098276802746512221191...
where A(1/8)^2 = A(4/81).
A(1/9) = 0.19726025709005021216217281111162473370492543981591...
where A(1/9)^2 = A(81/2401).
A(1/10) = 0.1643908422523431149995416239752018754267879073230...
where A(1/10)^2 = A(25/1024).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^4 ) - Ax^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A375455
Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2/(1-2*x)^5 ).
Original entry on oeis.org
1, 5, 20, 90, 470, 2566, 13885, 74435, 400530, 2183930, 12112167, 68351005, 392055575, 2281947435, 13450584580, 80110426698, 481032299830, 2905955107950, 17629836770715, 107254895106265, 653597751574541, 3986386422481665, 24321398369358070, 148386468804372420, 905156432977350225
Offset: 1
G.f.: A(x) = x + 5*x^2 + 20*x^3 + 90*x^4 + 470*x^5 + 2566*x^6 + 13885*x^7 + 74435*x^8 + 400530*x^9 + 2183930*x^10 + ...
where A(x)^2 = A( x^2/(1-2*x)^5 ).
RELATED SERIES.
A(x)^2 = x^2 + 10*x^3 + 65*x^4 + 380*x^5 + 2240*x^6 + 13432*x^7 + 80330*x^8 + 474960*x^9 + 2783590*x^10 + ...
(A(x)/x)^(1/5) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 205*x^5 + 989*x^6 + 4785*x^7 + 23881*x^8 + 124245*x^9 + 673020*x^10 + ...
x/Series_Reversion( A( x^5/(1-2*x)^5 )^(1/5) ) = 1 + 2*x + x^5 - 3*x^10 + 18*x^15 - 124*x^20 + 925*x^25 - 7372*x^30 + 61466*x^35 - 528678*x^40 + 4656736*x^45 + ...
SPECIFIC VALUES.
A(t) = 3/4 at t = 0.1535987460670222421700476984635848015956844093413...
A(t) = 3/5 at t = 0.1494534252284609931621062683479802340037678508370...
A(t) = 1/2 at t = 0.1443598468225794843508026942502138500132562159005...
A(t) = 2/5 at t = 0.1362812665991487577089709044456104123756230678872...
A(t) = 1/4 at t = 0.1144692674833411472616636812900607840273720167873...
A(1/7) = 0.477612316813393143429515106540189409592882329142...
where A(1/7)^2 = A(343/3125).
A(1/8) = 0.309560069127977498956512592550239740786137843207...
where A(1/8)^2 = A(16/243).
A(1/9) = 0.234151149075763124751821214511435118422621268792...
where A(1/9)^2 = A(729/16807).
A(1/10) = 0.189302960006249918030251616127177047165765112599...
where A(1/10)^2 = A(125/4096).
-
{a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = (1/2)*polcoeff( subst(Ax, x, x^2/(1-2*x)^5 ) - Ax^2, #A) ); H=Ax; A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A259606
G.f. satisfies: A(x) = Series_Reversion( x - A'(x)*A(x)^2 ).
Original entry on oeis.org
1, 1, 6, 60, 790, 12488, 226176, 4567245, 101057170, 2421311002, 62292579316, 1709994461396, 49844902545256, 1536870296603860, 49965056185462360, 1708221871912841430, 61272046476315041664, 2301058164207089144028, 90309756129843950212480, 3697832634432220792202296
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 60*x^4 + 790*x^5 + 12488*x^6 + 226176*x^7 + 4567245*x^8 + 101057170*x^9 + 2421311002*x^10 + ...
where
A(x - A'(x)*A(x)^2) = x.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 13*x^4 + 132*x^5 + 1736*x^6 + 27276*x^7 + 490408*x^8 + 9831498*x^9 + 216085602*x^10 + ...
A'(x)*A(x)^2 = x^2 + 4*x^3 + 35*x^4 + 434*x^5 + 6664*x^6 + 119072*x^7 + 2392326*x^8 + 52919810*x^9 + 1271042344*x^10 + ...
-
a[n_] := Module[{A = x}, Do[A = InverseSeries[x - D[A, x] A^2 + x O[x]^n, x], {n}]; SeriesCoefficient[A, {x, 0, n}]];
Array[a, 25] (* Jean-François Alcover, Sep 28 2020, after PARI *)
-
{a(n) = local(A=x); for(i=1,n,A=serreverse(x - A^2*A' +x*O(x^n))); polcoeff(A,n)}
for(n=1,25,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x, B=x^2); for(i=1, n, A = x + sum(m=1, n, Dx(m-1, (A')^m*A^(2*m)/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x, B=x^2); for(i=1, n, B=intformal(2*A); A = x*exp(sum(m=1, n, Dx(m-1, (A')^m*A^(2*m)/(m!*x))) +O(x^(n+1)))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments