cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375457 Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n for n >= 1.

Original entry on oeis.org

1, 1, 2, 11, 105, 1375, 22390, 430954, 9512029, 235992263, 6488607220, 195627162152, 6414053158664, 227170447034030, 8643069830739980, 351580969750713450, 15228097928340597681, 699791999466718937425, 34010355409897760336176, 1743142054929355666550574, 93975675621720312817066020
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2024

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 105*x^4 + 1375*x^5 + 22390*x^6 + 430954*x^7 + 9512029*x^8 + 235992263*x^9 + 6488607220*x^10 + ...
The defining property of g.f. A(x) is described below.
The table of coefficients in A(x)^n begins:
  n=1: [1, 1,  2,  11,  105,  1375,  22390, ...];
  n=2: [1, 2,  5,  26,  236,  3004,  48071, ...];
  n=3: [1, 3,  9,  46,  399,  4932,  77498, ...];
  n=4: [1, 4, 14,  72,  601,  7212, 111194, ...];
  n=5: [1, 5, 20, 105,  850,  9906, 149760, ...];
  n=6: [1, 6, 27, 146, 1155, 13086, 193886, ...];
  n=7: [1, 7, 35, 196, 1526, 16835, 244363, ...];
  ...
in which the sum of the first n coefficients in A(x/n)^n equals n, as illustrated by
  1 = 1;
  2 = 1 + 2/2;
  3 = 1 + 3/3 + 9/3^2;
  4 = 1 + 4/4 + 14/4^2 + 72/4^3;
  5 = 1 + 5/5 + 20/5^2 + 105/5^3 + 850/5^4;
  6 = 1 + 6/6 + 27/6^2 + 146/6^3 + 1155/6^4 + 13086/6^5;
  7 = 1 + 7/7 + 35/7^2 + 196/7^3 + 1526/7^4 + 16835/7^5 + 244363/7^6;
  ...
RELATED SERIES.
Let B(x) be the series reversion of x/A(x), B(x/A(x)) = x, then
B(x) = x + x^2 + 3*x^3 + 18*x^4 + 170*x^5 + 2181*x^6 + 34909*x^7 + 663152*x^8 + 14493060*x^9 + ... + A375452(n)*x^n + ...
Further, let C(x) = x*B'(x)/(1 - B(x)) = x + 3*x^2 + 13*x^3 + 91*x^4 + 981*x^5 + 14421*x^6 + 262963*x^7 + 5630843*x^8 + 137203969*x^9 + ...
then the coefficient of x^n in C(x) equals the sum of the initial n terms of A(x)^n for n >= 1; 1 = 1, 3 = 1 + 2, 13 = 1 + 3 + 9, 91 = 1 + 4 + 14 + 72, 981 = 1 + 5 + 20 + 105 + 850, etc.
The logarithmic derivative of g.f. A(x) begins
A(x)'/A(x) = 1 + 3*x + 28*x^2 + 375*x^3 + 6306*x^4 + 125286*x^5 + 2845200*x^6 + 72355095*x^7 + 2031897160*x^8 + 62371350558*x^9 + 2076430998588*x^10 + ...
Notice that the coefficient of x^n in A(x)'/A(x) appears to be divisible by (n+2) for n > 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m,V); for(i=0,n, A = concat(A,0); m=#A; V=Vec( subst(Ser(A)^m, x, x/m) );
    A[m] = (m - sum(k=1,#V,V[k]) )*m^(m-2) ); A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

G.f. A(x) satisfies [x^n] x*B'(x/n) / (1 - n*B(x/n)) = n for n >= 1, where B(x/A(x)) = x and B(x) is the g.f. of A375452.
a(n) ~ c * n^n, where c = 1.189395759976..., conjecture: c = (exp(1)-1)/exp(exp(-1)). - Vaclav Kotesovec, Sep 13 2024