A375521 a(n) is the numerator of Sum_{k = 1..n} 1 / (k*A375781(k)).
0, 1, 5, 14, 103, 1154, 1336333, 892896284279, 398631887241408183843479, 19863422690705846097977473796903171171326157279, 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050079
Offset: 0
Examples
The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..13
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end: b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end: a:= n-> numer(s(n)): seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
Mathematica
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(Prime[n]*b[n])]; b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*Prime[n])]; a[n_] := Numerator[s[n]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
-
Python
from itertools import islice from math import gcd from sympy import nextprime def A375521_gen(): # generator of terms p, q, k = 0, 1, 1 while (k:=nextprime(k)): m=q//(k*(q-p))+1 p, q = p*k*m+q, k*m*q p //= (r:=gcd(p,q)) q //= r yield p A375521_list = list(islice(A375521_gen(),11)) # Chai Wah Wu, Aug 30 2024
Extensions
a(0)=0 prepended by Alois P. Heinz, Oct 18 2024