A375537 Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k.
0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1
Offset: 1
Examples
Array begins: n | n-th row ---+----------------------------- 1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1 2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1 3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1 4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1 10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened)
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Mathematica
A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten
-
PARI
A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n)));
Comments