cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375538 Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.

Original entry on oeis.org

1, 13, 51227, 926908275845, 548123689541583443758024333411, 629375533747930240763697631488051776709110194920714685268467462860005271344878614119
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Comments

The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2930, 6775, 15484, 35185, ... .

Examples

			Fractions begins: 1, 13/10, 51227/36540, 926908275845/636617813832, 548123689541583443758024333411/369693143251781030056182487680, ...
For n = 1, prime(1) = 2, the "2-smooth numbers" are the powers of 2 (A000079), and the sequence that gives the exponent of the largest power of 2 that divides n is A007814, whose asymptotic mean is 1.
For n = 2, prime(2) = 3, the 3-smooth numbers are in A003586, and the sequence that gives the maximum exponent in the prime factorization of the largest 3-smooth divisor of n is A244417, whose asymptotic mean is 13/10.
		

Crossrefs

Cf. A033150, A375537, A375539 (denominators).
Cf. A375538 (numerators).

Programs

  • Mathematica
    d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Numerator[Array[f, 6]]

Formula

Let f(n) = a(n)/A375539(n). Then:
f(n) = lim_{m->oo} (1/m) * Sum_{i=1..m} A375537(n, i).
f(n) = Sum_{k>=1} k * (d(k+1, prime(n)) - d(k, prime(n))), where d(k, p) = Product_{q prime <= p} (1 - 1/q^k).
Limit_{n->oo} f(n) = A033150.

A375536 The maximum exponent in the prime factorization of the largest 5-smooth divisor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 6, 1, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 2, 0, 1, 0, 4, 4, 1, 0, 2, 1, 1, 1, 3, 0, 2, 0, 2, 1, 1, 1, 5, 0, 1, 2, 2, 0, 1, 0, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[IntegerExponent[n, {2, 3, 5}]]; Array[a, 100]
  • PARI
    a(n) = max(max(valuation(n, 2), valuation(n, 3)), valuation(n, 5));

Formula

a(n) = A051903(A355582(n)).
a(n) = max(A007814(n), A007949(n), A112765(n)).
a(n) = 0 if and only if n is a 7-rough number (A007775).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A375538(3)/A375539(3) = 51227/36540 = 1.401943076...
Showing 1-2 of 2 results.