cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375539 Denominator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.

Original entry on oeis.org

1, 10, 36540, 636617813832, 369693143251781030056182487680, 418823586043433867400108534336212749520449347490879717721482735332151276111078704000
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Comments

The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2929, 6775, 15483, 35184, ... .

Crossrefs

Cf. A375538 (numerators).

Programs

  • Mathematica
    d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Denominator[Array[f, 6]]

A375536 The maximum exponent in the prime factorization of the largest 5-smooth divisor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 6, 1, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 2, 0, 1, 0, 4, 4, 1, 0, 2, 1, 1, 1, 3, 0, 2, 0, 2, 1, 1, 1, 5, 0, 1, 2, 2, 0, 1, 0, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[IntegerExponent[n, {2, 3, 5}]]; Array[a, 100]
  • PARI
    a(n) = max(max(valuation(n, 2), valuation(n, 3)), valuation(n, 5));

Formula

a(n) = A051903(A355582(n)).
a(n) = max(A007814(n), A007949(n), A112765(n)).
a(n) = 0 if and only if n is a 7-rough number (A007775).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A375538(3)/A375539(3) = 51227/36540 = 1.401943076...

A375537 Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Comments

For a given n, A(n, k) is the sequence that gives the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor of k.

Examples

			Array begins:
   n | n-th row
  ---+-----------------------------
   1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1
   2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1
   3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1
   4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
   5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
   6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
   7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
   8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
   9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
  10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten
  • PARI
    A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n)));

Formula

A(n, k) = Max_{i=1..n} A249344(i, k).
A(n, k) = A051903(k) for n >= A000720(A006530(k)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{i=1..m} A(n, i) = A375538(n)/A375539(n).
Showing 1-3 of 3 results.