cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375575 a(n) is the least frequent digit of n! not counting trailing zeros, or -1 if there is more than one least frequent digit.

Original entry on oeis.org

1, 1, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, -1, -1, 7, 0, 4, -1, -1, -1, -1, -1, -1, 8, -1, -1, -1, 8, -1, -1, 9, -1, -1, 0, 9, 9, -1, -1, -1, 1, -1, -1, 2, -1, -1, 5, 5, 1, 4, 5, 7, -1, 5, -1, 6, 6, 0, -1, 5, 9, 6, -1, 0, 5, 9
Offset: 0

Views

Author

Keywords

Comments

Analogous to A375348.
If we were to count trailing zeros, then a(n) would never equal zero, for all n's >= 0. Therefore we only consider the decimal digits of A004154.
Conjecture: excluding -1, as n -> oo, the digits distribution is uniform as in A375348.

Examples

			a(0) = a(1) = 1 because 0! = 1! = 1 and 1 is the only digit present;
a(4) = -1 since 4! = 24 and there are two least frequent digits, 2 and 4.
a(14) = 9 because 14! = 87178291200 and, not counting the two trailing 0's, there are two 1's, two 2's, two 7's, two 8's but only one 9.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,j;
      L:= convert(n!,base,10);
      for j from 1 while L[j] = 0 do od:
      L:= Statistics:-Tally(L[j...-1]);
      L:= sort(L,(a,b) -> rhs(a) < rhs(b));
      if nops(L) >= 2 and rhs(L[2]) = rhs(L[1]) then -1 else lhs(L[1]) fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 02 2024
  • Mathematica
    Rarest[lst_] := MinimalBy[ Tally[lst], Last][[All, 1]]; a[n_] := If[ Length[c = Rarest[ IntegerDigits[n!/10^IntegerExponent[n!, 10]] ]] >1, -1, c[[1]]]; Array[a, 80, 0]
  • Python
    from collections import Counter
    from sympy import factorial
    def A375575(n): return -1 if len(k:=Counter(str(factorial(n)).rstrip('0')).most_common()) > 1 and k[-1][1]==k[-2][1] else int(k[-1][0]) # Chai Wah Wu, Sep 15 2024