cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294336 Number of ways to write n as a finite power-tower a^(b^(c^...)) of positive integers greater than one.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2017

Keywords

Comments

Möbius-transform of A294337. - Antti Karttunen, Jun 12 2018

Examples

			The a(4096) = 7 ways are: 2^12, 4^6, 8^4, 8^(2^2), 16^3, 64^2, 4096.
		

Crossrefs

Programs

  • Mathematica
    Array[1+Sum[#0[g],{g,Rest[Divisors[GCD@@FactorInteger[#1][[All,2]]]]}]&,200]
  • PARI
    A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
    A294336(n) = if(1==n,n,sumdiv(A052409(n),d,A294336(d))); \\ Antti Karttunen, Jun 12 2018, after Mathematica-code.

Formula

a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} a(d). - Antti Karttunen, Jun 12 2018, after Mathematica-code.
a(n) = A294337(A052409(n)) for n >= 2. - Pontus von Brömssen, Aug 20 2024

Extensions

More terms from Antti Karttunen, Jun 12 2018

A375599 The n-th record of A294336 occur at index 2^a(n).

Original entry on oeis.org

0, 2, 4, 8, 12, 16, 32, 48, 64, 96, 144, 240, 288, 360, 432, 576, 720, 1260, 1296, 1440, 2160, 2520, 2880, 3600, 5040, 7200, 7560, 8640, 10080, 14400, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 75600, 90720, 100800, 110880, 151200, 166320, 221760
Offset: 1

Views

Author

Pontus von Brömssen, Aug 20 2024

Keywords

Comments

Also, indices of records of A294337, starting at A294337(0) = 1.

Crossrefs

Formula

A294336(2^a(n)) = A375598(n).
A294337(a(n)) = A375598(n) for n >= 2.
Showing 1-2 of 2 results.