A375618 a(n) is the least positive integer k such that there are n partitions k = x + y + z of positive integers such that x * y * z is a perfect cube or -1 if no such positive integer exists.
1, 3, 20, 21, 57, 94, 133, 219, 217, 273, 453, 434, 551, 589, 399, 791, 665, 893, 1321, 779, 1330, 1387, 1519, 1749, 1786, 2033, 1767, 2527, 2793, 1995, 4066, 3325, 4389, 5548, 4557, 3895, 4123, 5187, 5890, 5529, 5453, 8075, 6213, 7980, 7581, 7790, 11275, 8113, 11324, 9310
Offset: 0
Keywords
Examples
a(1) = 3 as 3 = 1 + 1 + 1 and 1 * 1 * 1 = 1 is a perfect cube.
Links
- David A. Corneth, Table of n, a(n) for n = 0..303
- David A. Corneth, PARI program
Crossrefs
Cf. A375580.
Programs
-
Maple
N:= 2*10^4: V:= Array(1..N): count:= 0: for x from 1 to N/3 do for y from x to (N-x)/2 do F:= ifactors(x*y)[2]; b:= mul(t[1],t = select(s -> s[2] mod 3 = 2, F)); c:= mul(t[1],t = select(s -> s[2] mod 3 = 1, F)); for k from ceil((y/(b*c^2))^(1/3)) do s:= x+y+k^3 * b * c^2; if s > N then break fi; if s < x + 2*y then next fi; V[s]:= V[s]+1 od od od: m:= max(V): A:= Array(0..m): A[0]:= 1: count:= 1: for i from 1 to N while count < m+1 do v:= V[i]; if A[v] = 0 then A[v]:= i; count:= count+1 fi od: AL:= convert(V,list); if not member(0,AL,'r') then r:= m+2 fi; AL[1..r-1]; # Robert Israel, Oct 21 2024, corrected Aug 22 2025
-
PARI
\\ See Corneth link