A375650 a(n) is the cardinality of the sumset of the Collatz trajectory of n.
1, 3, 23, 6, 18, 24, 69, 10, 71, 22, 68, 25, 41, 69, 125, 15, 61, 73, 104, 28, 36, 68, 110, 33, 115, 48, 3060, 69, 95, 131, 2951, 21, 133, 67, 92, 76, 108, 108, 297, 37, 3007, 45, 203, 76, 105, 117, 2914, 45, 147, 119, 183, 57, 70, 3081, 3060, 82, 228, 102, 284
Offset: 1
Keywords
Examples
The Collatz trajectory of 3 is {3,10,5,16,8,4,2,1}, which has the sumset {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,32} of size 23, so a(3) = 23.
Links
- Markus Sigg, Table of n, a(n) for n = 1..10000
Programs
-
PARI
a(n) = { my(T = List([n]), S = Set()); while(n > 1, n = if(n % 2 == 0, n/2, 3*n+1); listput(T, n)); for(i = 1, #T, for(j = i, #T, S = setunion(S, Set([T[i] + T[j]])); ) ); #S }; print(vector(59, n, a(n)));
-
Python
def a(n): T, S = [n], set() while n > 1: if n & 1 == 0: n >>= 1 else: n = 3 * n + 1 T.append(n) for i in range(len(T)): for j in range(i, len(T)): S.add(T[i] + T[j]) return len(S) print([a(n) for n in range(1, 60)]) # DarĂo Clavijo, Aug 24 2024
Comments