cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375726 a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0) = 1, a(1) = 3, a(2) = 6.

Original entry on oeis.org

1, 3, 6, 16, 37, 91, 218, 528, 1273, 3075, 7422, 17920, 43261, 104443, 252146, 608736, 1469617, 3547971, 8565558, 20679088, 49923733, 120526555, 290976842, 702480240, 1695937321, 4094354883, 9884647086, 23863649056, 57611945197, 139087539451, 335787024098
Offset: 0

Views

Author

Yifan Xie, Aug 25 2024

Keywords

Comments

a(n) is the number of subsets T of A = {1, 2, ..., 2*n} such that no pair of elements a, b of T satisfy |a-b| = 1 or n.

Examples

			For n = 2, the a(2) = 6 subsets of {1, 2, 3, 4} are {}, {1}, {2}, {3}, {4}, {1, 4}.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 3, 1}, {1, 3, 6}, 31] (* Hugo Pfoertner, Aug 26 2024 *)
  • PARI
    my(a=1, b=3, c=6); for(n=1, 31, print1(a, ", "); my(d=a+3*b+c); a=b; b=c; c=d)

Formula

a(n) = (1/4)*((3 + sqrt(2))*(1+sqrt(2))^n + (3 - sqrt(2))*(1-sqrt(2))^n-2*(-1)^n).
For n >= 2, a(n) = 2*a(n-1) + a(n-2) - (-1)^n.
From Stefano Spezia, Aug 26 2024: (Start)
G.f.: (1 + 2*x)/((1 + x)*(1 - 2*x - x^2)).
E.g.f.: (sinh(x) - cosh(x) + exp(x)*(3*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/2. (End)
Let f = (3 - sqrt(2))*exp((1 - sqrt(2))*x) + (3 + sqrt(2))*exp((1 + sqrt(2))*x), then 4*a(n) + 2*(-1)^n = n! * [x^n] f. - Peter Luschny, Sep 10 2024
a(n)+a(n-1) = A048654(n). - R. J. Mathar, Sep 27 2024