A375729 Irregular triangular array read by rows. T(n,k) is the number of monic irreducible polynomials of degree n in F_2[x] that are k-normal, n>=1, k>=0 .
1, 1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 3, 7, 7, 0, 2, 2, 16, 8, 4, 2, 21, 21, 7, 7, 48, 24, 24, 0, 3, 93, 93, 128, 64, 64, 32, 32, 8, 6, 1, 315, 315, 448, 224, 224, 112, 56, 56, 23, 8, 8, 2, 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2, 2048, 1024, 512, 256, 128, 64, 32, 16, 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30
Offset: 1
Examples
Triangle begins ... 1, 1; 1; 1, 1; 2, 1; 3, 3; 4, 2, 3; 7, 7, 0, 2, 2; 16, 8, 4, 2; 21, 21, 7, 7; 48, 24, 24, 0, 3; 93, 93; 128, 64, 64, 32, 32, 8, 6, 1; 315, 315; 448, 224, 224, 112, 56, 56, 23, 8, 8, 2; 675, 675, 225, 225, 135, 135, 45, 45, 9, 9, 2, 2; 2048, 1024, 512, 256, 128, 64, 32, 16; 3825, 3825, 0, 0, 0, 0, 0, 0, 30, 30; ... T(6,1) = 2 because we have 1+X+X^6 and 1+X+X^3+X^4+X^6.
Links
- M. Alizadeh, M Darafsheh, and S. Mehrabi, On the k-normal elements and polynomials over finite fields, Italian Journal of Pure and Applied Mathematics, 39 (2018), 451-464.
- S. Huczynska, G. Mullen, D. Panario, and D. Thomson, Existences and properties of k-normal elements over finite fileds, Finite Fields and Their Applications, 24 (2013), 170-183.
Programs
-
Mathematica
knormalcy[lyndonword_, n_] := n - MatrixRank[Table[RotateRight[lyndonword, k], {k, 0, n - 1}], Modulus -> 2]; Map[Table[Count[#, i], {i, 0, Max[#]}] &,Table[orbit[word_] := Table[RotateLeft[word, k], {k, 0, nn - 1}]; c = Select[DeleteDuplicates[Map[Sort, Map[orbit, Tuples[{0, 1}, nn]] /. Table[Tuples[{0, 1}, nn][[i]] -> i - 1, {i, 1, 2^nn}]]], Length[DeleteDuplicates[#]] == nn &][[All, 1]]; Map[knormalcy[#, nn] &, Table[Tuples[{0, 1}, nn][[i]], {i, 1, 2^nn}][[c + 1]]], {nn, 1, 5}]]
Comments