cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375731 a(n) is the number of partitions of n having a square number of parts whose sum of squares is a square.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 2, 7, 4, 4, 7, 7, 6, 9, 12, 9, 21, 21, 19, 26, 30, 32, 43, 54, 54, 64, 87, 85, 119, 128, 146, 174, 205, 213, 281, 324, 368, 420, 503, 531, 688, 760, 837, 992, 1174, 1252, 1535, 1705, 1931, 2236, 2619, 2821, 3402, 3769, 4272
Offset: 0

Views

Author

Felix Huber, Aug 28 2024

Keywords

Examples

			a(13) counts the 4 partitions [1, 1, 1, 1, 1, 1, 1, 3, 3] with 9 = 3^2 parts and 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 = 5^2, [1, 4, 4, 4] with 2^2 parts and 1^2 + 4^2 + 4^2 + 4^2 = 7^2, [2, 2, 4, 5] with 4 = 2^2 parts and 2^2 + 2^2 + 4^2 + 5^2 = 7^2, [13] with 1 = 1^2 part and 13^2 = 13^2.
		

Crossrefs

Programs

  • Maple
    # first Maple program to calculate the sequence:
    A375731:=proc(n) local a,i,j; a:=0; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then a:=a+1 fi od; return a end proc; seq(A375731(n),n=0..63);
    # second Maple program to calculate the partitions:
    A375731part:=proc(n) local L,i,j;L:=[]; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then L:=[op(L),i] fi od; return op(L) end proc; A375731part(13);
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (issquare(#p) && issquare(norml2(Vec(p))), nb++)); nb; \\ Michel Marcus, Aug 30 2024

Formula

1 <= a(n) <= A240127(n).