A375760 Array read by rows: T(n,k) is the first prime with exactly n occurrences of decimal digit k.
2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 101, 13, 2, 3, 41, 5, 61, 7, 83, 19, 1009, 11, 223, 233, 443, 557, 661, 277, 881, 199, 10007, 1117, 2221, 2333, 4441, 5557, 6661, 1777, 8887, 1999, 100003, 10111, 22229, 23333, 44449, 155557, 166667, 47777, 88883, 49999, 1000003, 101111, 1222229, 313333, 444443, 555557, 666667, 727777, 888887, 199999
Offset: 0
Examples
T(4,1) = 10111 because 10111 is the first prime with four 1's. Array starts 2 2 3 2 2 2 2 2 2 2 101 13 2 3 41 5 61 7 83 19 1009 11 223 233 443 557 661 277 881 199 10007 1117 2221 2333 4441 5557 6661 1777 8887 1999 100003 10111 22229 23333 44449 155557 166667 47777 88883 49999 1000003 101111 1222229 313333 444443 555557 666667 727777 888887 199999
Links
- Robert Israel, Table of n, a(n) for n = 0..1009 (rows 0 to 100)
Crossrefs
Programs
-
Maple
F:= proc(v,x) local d,y,z,L,S,SS,Cands,t,i,k; for d from v do Cands:= NULL; if x = 0 then SS:= combinat:-choose([$2..d-1],v) elif member(x,[1,3,7,9]) then SS:= combinat:-choose(d,v) else SS:= combinat:-choose([$2..d],v) fi; for S in SS do for y from 9^(d-v+1) to 9^(d-v+1)+9^(d-v)-1 do L:= convert(y,base,9)[1..d-v+1]; L:= map(proc(s) if s < x then s else s+1 fi end proc, L); i:= 1; t:= 0: for k from 1 to d do if member(k,S) then t:= t + x*10^(k-1) else t:= t + L[i]*10^(k-1); i:= i+1; fi; od; Cands:= Cands, t od od; Cands:= sort([Cands]); for t in Cands do if isprime(t) then return t fi od; od end proc: F(0,0):= 2: F(1,2):= 2: F(1,5):= 5: for i from 0 to 10 do seq(F(i,x), x=0..9) od;
-
Mathematica
T[n_,k_]:=Module[{p=2},While[Count[IntegerDigits[p],k]!=n, p=NextPrime[p]]; p]; Table[T[n,k],{n,0,5},{k,0,9}]//Flatten (* Stefano Spezia, Aug 27 2024 *)