cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375770 In an n X n grid draw straight walls between cells, starting at a border, such that the resulting figure is connected and has only one-cell wide paths; a(n) is the number of solutions distinct under reflections and rotations.

Original entry on oeis.org

1, 1, 10, 149, 3177, 76258, 1991098, 56431302, 1738662461, 58282168670, 2121623710614, 83566630166058, 3545346228604588, 161250925229195536, 7827463597195165900, 403872784815626357788, 22069190323151660044413, 1273007854598883147607470, 77288239799225577008977654
Offset: 1

Views

Author

Lars Blomberg, Aug 27 2024

Keywords

Comments

This sequence contains some, but not all of the spanning trees in A349718.

Examples

			a(2)=1:
+=======+
| o - o |
| |   | |
| o ║ o |
+===+===+
a(3)=10:
+===========+  +=======+===+  +=======+===+  +===+===+===+  +===========+
| o - o - o |  | o - o ║ o |  | o - o ║ o |  | o ║ o ║ o |  | o - o - o |
| |   |   | |  | |   |   | |  | |   | ║ | |  | |   |   | |  | |   |   ══+
| o ║ o ║ o |  | o ║ o - o |  | o ║ o ║ o |  | o - o - o |  | o ║ o - o |
| | ║ | ║ | |  | | ║ |   | |  | | ║ |   | |  | |   |   | |  | | ║ |   | |
| o ║ o ║ o |  | o ║ o ║ o |  | o ║ o - o |  | o ║ o ║ o |  | o ║ o ║ o |
+===+===+===+  +===+===+===+  +===+=======+  +===+===+===+  +===+===+===+
+===+=======+  +=======+===+  +===========+  +===========+  +=======+===+
| o ║ o - o |  | o - o ║ o |  | o - o - o |  | o - o - o |  | o - o ║ o |
| |   |   ══+  | |   |   | |  | |   |   ══+  +═══  |   ══+  +═══  |   | |
| o - o - o |  | o ║ o - o |  | o ║ o - o |  | o - o - o |  | o - o - o |
| |   |   | |  | | ║ |   ══+  | | ║ |   ══+  | |   |   | |  | |   |   ══+
| o ║ o ║ o |  | o ║ o - o |  | o ║ o - o |  | o ║ o ║ o |  | o ║ o - o |
+===+===+===+  +===+=======+  +===+=======+  +===+===+===+  +===+=======+
n=4 sample
+===+===+===+===+  +=======+===+===+
| o ║ o ║ o ║ o |  | o - o ║ o ║ o |
| |   |   |   | |  +═══  | ║ |   | |
| o - o - o - o |  | o - o ║ o - o |
+═══  |   |   ══+  | |   | ║ |   ══+
| o - o ║ o - o |  | o ║ o ║ o - o |
| |   | ║ |   ══+  | | ║ |   |   | |
| o ║ o ║ o - o |  | o ║ o - o ║ o |
+===+===+=======+  +===+=======+===+
n=5 sample
+===+===+===+===+===+
| o ║ o ║ o ║ o ║ o |
| |   | ║ | ║ |   | |
| o - o ║ o ║ o - o |
| |   |   |   |   ══+
| o ║ o - o - o - o |
| | ║ |   |   |   ══+
| o ║ o ║ o ║ o - o |
| | ║ | ║ | ║ |   | |
| o ║ o ║ o ║ o ║ o |
+===+===+===+===+===+
n=6 sample
+===========+===+===+===+
| o - o - o ║ o ║ o ║ o |
| |   |   | ║ | ║ | ║ | |
| o ║ o ║ o ║ o ║ o ║ o |
| | ║ | ║ |   |   | ║ | |
| o ║ o ║ o - o - o ║ o |
| | ║ | ║ |   |   | ║ | |
| o ║ o ║ o ║ o ║ o ║ o |
| | ║ | ║ | ║ | ║ |   | |
| o ║ o ║ o ║ o ║ o - o |
| | ║ | ║ | ║ | ║ |   ══+
| o ║ o ║ o ║ o ║ o - o |
+===+===+===+===+=======+
Examples of spanning trees where some of the walls do not start at a border, so they are not included in this sequence.
+===+===+=======+  +===============+
| o ║ o ║ o - o |  | o - o - o - o |
| | ║ |   |   | |  +══════════   | |
| o ║ o - o ║ o |  | o - o - o ║ o |
| | ║ ═════ ║ | |  | |   ══  | ║ | |
| o ║ o - o ║ o |  | o ║ o - o ║ o |
| |   |   | ║ | |  | |   ═════   | |
| o - o ║ o - o |  | o - o - o - o |
+=======+=======+  +===============+
		

Crossrefs

Cf. A349718, A375817 (not reduced for symmetries), A375859 (up to rotations), A375860 (up to symmetries of rectangle).

Programs

Extensions

a(1) set to 1 and a(9) onwards from Andrew Howroyd, Aug 31 2024