cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A380749 a(n) is the number of positive integer solutions of n*x*y*z*w = (x + n) * (y + n) * (z + n) * (w + n), x <= y <= z <= w.

Original entry on oeis.org

0, 374, 450, 375, 301, 478, 228, 359, 238, 515, 206, 879, 259, 506, 780, 349, 284, 762, 135, 916, 905, 493, 99, 1189, 423, 306, 318, 869, 70, 1879, 97, 311, 714, 250, 778, 1300, 109, 258, 483, 1334, 71, 1987, 93, 545, 1451, 303, 64, 1156, 202, 504, 481, 822, 71
Offset: 1

Views

Author

Zhining Yang, Jan 31 2025

Keywords

Examples

			For n=5, a(5) = 301 because 5*x*y*z*w = (x + 5)*(y + 5)*(z + 5)*(w + 5), 0 < x <= y <= z <= w has 301 positive integer solutions: {{2,12,596,357595}, {2,12,597,179095}, {2,12,598,119595}, ..., {6,7,9,220}, {6,10,11,20}, {7,9,10,20}}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@Solve[n*x*y*z*w == (x + n)  (y + n)  (z + n) (w + n) &&
        0 < x <= y <= z <= w, {x, y, z, w}, Integers], {n, 10}]

A374059 a(n) is the smallest integer k such that k*x*y*z = (x + k) * (y + k) * (z + k), 0 < x <= y <= z has exactly n integer solutions.

Original entry on oeis.org

1, 11, 13, 25, 7, 9, 22, 48, 5, 21, 14, 8, 280, 10, 1020, 4, 70, 3, 6, 240, 2, 42, 12, 660, 30
Offset: 0

Views

Author

Zhining Yang, Oct 28 2024

Keywords

Comments

a(27)=630, a(29)=60, a(30)=420. No solutions were found for n={25,26,28} with k<10^5.

Examples

			For n=8, a(n)=5 because 5 is the smallest integer such that 5*x*y*z = (x+5)*(y+5)*(z+5), 0 < x <= y <= z has exactly 8 positive integer solutions: {{2,12,595}, {2,14,95}, {2,15,70}, {2,20,35}, {3,6,220}, {3,10,20}, {4,5,45}, {5,5,20}}.
		

Crossrefs

Cf. A375787.

Extensions

a(12) corrected by Jinyuan Wang, Dec 04 2024

A380750 a(n) is the smallest integer k such that k*x*y*z*w = (x + k) * (y + k) * (z + k) * (w + k), 0 < x <= y <= z <= w has exactly n integer solutions.

Original entry on oeis.org

1019, 1559, 1637, 1103, 743, 419, 1039, 359, 311, 479, 653, 509, 389, 251, 593, 521, 263, 197, 1061, 131, 353, 269, 239, 167, 89, 179, 337, 113, 139, 83, 181, 229, 934, 898, 277, 151, 103, 554, 1042, 281, 109, 107, 566, 283, 1299, 79, 386, 157, 1959, 173, 241
Offset: 1

Views

Author

Zhining Yang, Jan 31 2025

Keywords

Comments

a(1)-a(32) are all primes.

Examples

			For n=8, a(n)=359 because 359 is the smallest integer such that 359*x*y*z*w = (x+359)*(y+359)*(z+359)*(w+359), 0 < x <= y <= z <= w has exactly 8 positive integer solutions: {{2, 406, 6462, 209302385}, {3, 185, 30515, 357644416}, {4, 168, 1375, 1804333641}, {6, 74, 42001, 462553550}, {6, 97, 1406, 462553550}, {15, 28, 8600, 1804333641}, {15, 100, 168, 1804333641}, {22, 50, 234, 11057989441}}.
		

Crossrefs

A381644 a(n) is the number of positive integer solutions of n*x*y*z*v*w = (x + n) * (y + n) * (z + n) * (v + n) * (w + n), x <= y <= z <= v <= w.

Original entry on oeis.org

0, 21313, 35472, 28901, 36366, 35534, 33048, 55548, 30891, 60741, 76106, 161909, 88494, 114437, 220621, 76856, 56832, 195942, 33510, 212618, 222606, 154046, 21700, 324700, 107022, 94149, 109693, 244884, 35992, 592482, 39051, 134282, 213723, 104829, 363935, 355519, 70334, 110560, 158300, 485946, 46982, 650655
Offset: 1

Views

Author

Zhining Yang, Mar 03 2025

Keywords

Examples

			For n=4, a(4) = 28901 because 4*x*y*z*v*w = (x + 4)*(y + 4)*(z + 4)*(v + 4)*(w + 4), 0 < x <= y <= z <= v <= w has 28901 positive integer solutions: {{2,13,205,42637,1818041676},{2,13,205,42638,909042156},{2,13,205,42639,606042316},{2,13,205,42640,454542396}, ..., {10, 10, 12, 14, 21}, {10, 11, 12, 14, 18}, {10, 12, 12, 14, 16}}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@Solve[n*x*y*z*v*w == (x + n)  (y + n)  (z + n) (v + n) (w + n) &&
        0 < x <= y <= z <= v <= w, {x, y, z, v, w}, Integers], {n, 8}]

A382672 Number of integer solutions to Product_{k=1..n} (3 + c(k)) = 3 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1).

Original entry on oeis.org

0, 2, 17, 450, 35472, 12127741
Offset: 1

Views

Author

Zhining Yang, Apr 03 2025

Keywords

Examples

			For n=3, a(3) = 17 because 3*x*y*z = (x + 3)*(y + 3)*(z + 3), 0 < x <= y <= z has 17 positive integer solutions: {{2,16,285}, {2,17,150}, {2,18,105}, {2,20,69}, {2,21,60}, {2,24,45}, {2,25,42}, {2,30,33}, {3,7,60}, {3,8,33}, {3,9,24}, {3,12,15}, {4,5,42}, {4,6,21}, {4,7,15}, {5,6,12}, {6,6,9}}.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(p=c/@Range[n];Length@Solve[3 Times@@p==Times@@(3+p)&&LessEqual@@Flatten[{0,p}],p,Integers]);Array[a,5]

A383223 Number of integer solutions to Product_{k=1..n} (4 + c(k)) = 4 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1).

Original entry on oeis.org

0, 2, 15, 375, 28901, 5185573
Offset: 1

Views

Author

Zhining Yang, Apr 19 2025

Keywords

Examples

			For n=3, a(3) = 15 because 4*x*y*z = (x + 4)*(y + 4)*(z + 4), 0 < x <= y <= z has 15 positive integer solutions: {{2,13,204}, {2,14,108}, {2,15,76}, {2,16,60}, {2,18,44}, {2,20,36}, {2,24,28}, {3,6,140}, {3,7,44}, {3,8,28}, {3,12,14}, {4,5,36}, {4,6,20}, {4,8,12}, {5,6,12}}.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(p=c/@Range[n]; Length@Solve[4 Times@@p==Times@@(4+p)&&LessEqual@@Flatten[{0, p}], p, Integers]); Array[a, 5]
Showing 1-6 of 6 results.