cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375853 Triangle read by rows: T(n, k) = k*(n - k)*binomial(2*n+2, 2*k+1)/(4*n + 2) for 1 <= k <= n-1.

Original entry on oeis.org

2, 8, 8, 20, 56, 20, 40, 216, 216, 40, 70, 616, 1188, 616, 70, 112, 1456, 4576, 4576, 1456, 112, 168, 3024, 14040, 22880, 14040, 3024, 168, 240, 5712, 36720, 88400, 88400, 36720, 5712, 240, 330, 10032, 85272, 284240, 419900, 284240, 85272, 10032, 330
Offset: 2

Views

Author

Mingjian Ding, Aug 31 2024

Keywords

Comments

The T(n, k) are the coefficients of the minuscule polynomials of type A. They are the Wiener index of a minuscule lattice of type A, i.e., the Hasse diagram of the poset of order ideals in a k X (n - k) rectangle.

Examples

			Triangle begins:
  n\k  1    2     3    4   5
  2:   2;
  3:   8,   8;
  4:  20,  56,   20;
  5:  40, 216,  216,  40;
  6:  70, 616, 1188, 616, 70;
 ...
		

Crossrefs

Column 1 and main diagonal are A007290(n+1).
Row sums are A002699(n-1).
Half the sums of the gamma coefficients are A376072(n).

Programs

  • Maple
    Trow := n -> seq(1/(4*n+2)*k*(n-k)*binomial(2*n+2, 2*k+1), k = 1..n-1):
    for n from 2 to 10 do Trow(n) od;
    # Alternatively, using the generating function of the row polynomials:
    rgf := (n, x) -> ((sqrt(x) - 1)^(2*n)*(2*n*sqrt(x) + x + 1) - (sqrt(x) + 1)^(2*n)*(-2*n*sqrt(x) + x + 1))/(16*sqrt(x)):
    T := (n, k) -> coeff(expand(rgf(n, x)), x, k):
    seq(print(seq(T(n, k), k = 1..n - 1)), n = 2..8): # Peter Luschny, Sep 22 2024
  • Mathematica
    Flatten@Table[k*(n - k)*Binomial[2*n + 2, 2*k + 1]/(4*n + 2), {n, 2, 10}, {k, n - 1}] (* Zhining Yang, Sep 18 2024 *)
  • PARI
    T(n,k) = k*(n-k)*binomial(2*n+2,2*k+1)/(4*n+2) \\ Andrew Howroyd, Sep 01 2024

Formula

Sum_{k>=0} T(n, k) = A002699(n-1) (conjectured by Bourn and Erickson).
G.f.: T_n(x) = Sum_{k>=0} T(n, k)*x^k = (1 - x)^{2*n}*Sum_{k>=0}Sum_{alpha, beta} EMD_k(alpha, beta)*x^k, where EMD_k is the Earth Mover's Distance on (alpha, beta), and alpha, beta are the elements of composition of k into n parts.
T_n(x^2) = (n + 1)/8*((1 + x)^(2*n) + (1 - x)^(2*n)) - 1/(16*x)*((1 + x)^(2*n + 2) - (1 - x)^(2*n + 2)). (Proposition 3.1, arXiv:2308.16782)