A375971 Positions of records in A375970.
1, 7, 12, 24, 121, 337, 512, 722, 840, 4704, 4900, 23762, 28560, 29767, 166464, 235224, 647149, 970224, 1940449, 4920547, 14070000, 20346212, 32959080, 42508287, 79346175, 307546368, 319311720, 450982499, 491756160, 921166587
Offset: 1
Examples
a(3) = 12 because A000330(12) = 650 = 2 * 5^2 * 13 is divisible by 5^2, which is greater than any square dividing A000330(i) for 1 <= i < 12. From _David A. Corneth_, Sep 13 2024: (Start) 24 is in the sequence as A000330(24) = 24 * 25 * 49 / 6 = 4 * 25 * 49. The largest square dividing 4 is 4, the largest square dividing 25 is 25 and the largest square dividing 49 is 49. So the largest k such that k^2 divides 4 * 25 * 49 is sqrt(4)*sqrt(25)*sqrt(49) = 2*5*7 = 70, a record found at position 24 in A375970. (End)
Programs
-
Maple
g:= proc(n) local t,s,F; t:= n*(n+1)*(2*n+1)/6; F:= ifactors(t)[2]; mul(s[1]^floor(s[2]/2), s=F) end proc: R:= NULL: m:= 0: count:= 0: for k from 1 while count < 20 do v:= g(k); if v > m then m:= v; R:= R,k; count:= count+1; fi od: R;
Extensions
a(25) from Michael S. Branicky, Sep 06 2024
a(26)-a(31) from David A. Corneth, Sep 08 2024
Comments