cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375973 Record values in A375970.

Original entry on oeis.org

1, 2, 5, 70, 99, 195, 240, 323, 2378, 2716, 15015, 48505, 80782, 130662, 510068, 672210, 1926615, 2744210, 4116315, 10278759, 31320850, 87347695, 93222358, 155904960, 177385520, 189539896, 250637778, 272607725, 486471832, 647562465, 1620820270
Offset: 1

Views

Author

Robert Israel, Sep 04 2024

Keywords

Comments

a(n) is the largest number whose square divides A000330(A375971(n)).

Examples

			a(3) = 5 because A375971(3) = 650 and 5^2 is the largest square dividing 650.
From _David A. Corneth_, Sep 13 2024: (Start)
70 is in the sequence as A000330(24) = 24 * 25 * 49 / 6 = 4 * 25 * 49. The largest square dividing 4 is 4, the largest square dividing 25 is 25 and the largest square dividing 49 is 49.
So the largest k such that k^2 divides 4 * 25 * 49 is sqrt(4)*sqrt(25)*sqrt(49) = 2*5*7 = 70, a record. (End)
		

Crossrefs

Programs

  • Maple
    g:= proc(n) local t, s, F; t:= n*(n+1)*(2*n+1)/6;
      F:= ifactors(t)[2];
      mul(s[1]^floor(s[2]/2), s=F)
    end proc:
    V:= NULL; m:= 0: count:= 0:
    for k from 1 while count < 20 do
      v:= g(k);
      if v > m then m:= v; V:= V,v; count:= count+1; fi
    od:
    V;

Formula

a(n) = A375970(A375971(n)).

Extensions

a(25) from Michael S. Branicky, Sep 06 2024
a(26)-a(31) from David A. Corneth, Sep 08 2024