cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376041 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) / (1 - A(x)).

Original entry on oeis.org

0, 1, 9, 191, 6496, 305164, 18317390, 1339293822, 115492112640, 11476262240520, 1291250885222592, 162271449317302632, 22528350072978189600, 3424249337820235241472, 565573503590604522245136, 100864333223422171393303488, 19317041144591537348567168256
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n+2*k-2)!/(3*n+k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (3*n+2*k-2)!/(3*n+k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x * (1 - x))) ).

A376038 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) * (1 - A(x))^2.

Original entry on oeis.org

0, 1, 3, 29, 466, 10444, 300296, 10539738, 436831368, 20879226240, 1130604893016, 68406042884376, 4573574072262240, 334855813955693952, 26645202689658107712, 2289609993045578793120, 211302073839493597484160, 20844012997702684830894336
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n-k-2)!/(3*n-2*k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (3*n-k-2)!/(3*n-2*k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x / (1 - x)^2)) ).

A376039 E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^3)) * (1 - A(x)).

Original entry on oeis.org

0, 1, 5, 65, 1376, 40454, 1523464, 69979734, 3794288280, 237186275520, 16794542216088, 1328558461234080, 116126748206895216, 11114654375545182864, 1156103394150386866560, 129855826037621953356864, 15664344145032570448561920, 2019701492029961287845196032
Offset: 0

Views

Author

Seiichi Manyama, Sep 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (3*n-2)!/(3*n-k-1)!*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} (3*n-2)!/(3*n-k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^3 * (1 - exp(-x / (1 - x))) ).
Showing 1-3 of 3 results.