cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376056 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.

Original entry on oeis.org

2, 7, 71, 6959, 62255215, 4736981006316791, 26518805245879857416837904442871, 811438882694890436523185183518581584358651922339197834228784351
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Comments

Theorem: Given any sequence of nonnegative integers b(1), b(2), b(3), ..., let a(1), a(2), a(3), ... be the lexicographically earliest sequence of positive integers such that for all n >= 1, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1. Then S(n) = (e(n)-1)/e(n) for positive integers e(1), e(2), e(3), ....
For the present sequence the e(k) are given in A376057.

Crossrefs

Programs

  • Maple
    # Given a sequence b(1), b(2), b(3), ... of nonnegative real numbers, this program computes the first M terms of the lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... with the property that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1.
    # For the present sequence we set b(k) = 2*k - 1.
    b := Array(0..100,-1); a := Array(0..100,-1); S := Array(0..100,-1); d := Array(0..100,-1);
    for k from 1 to 100 do b[k]:=2*k-1; od:
    M:=8;
    S[0] := 0; d[0] := 1;
    for n from 1 to M do
    a[n] := floor(b[n]/d[n-1])+1;
    S[n] := S[n-1] + b[n]/a[n];
    d[n] := 1 - S[n];
    od:
    La:=[seq(a[n],n=1..M)]; # the present sequence
    Ls:=[seq(S[n],n=1..M)]; # the sums S(n)
    Lsn:=[seq(numer(S[n]),n=1..M)];
    Lsd:=[seq(denom(S[n]),n=1..M)]; # A376057
    Lsd-Lsn; # As a check, by the above theorem, this should (and does) produce the all-1's sequence
    # Some small changes to the program are needed if the starting sequence {b(n)} has offset 0, as for example in the case of the Fibonacci or Catalan numbers (see A376058-A376061).

Formula

a(n+1) = (2*n+1)*A376057(n) + 1.