cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376057 a(n) is the denominator of the sum S(n) defined in A376056.

Original entry on oeis.org

1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Examples

			The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
    seq(a(n), n=0..7);  # Alois P. Heinz, Oct 18 2024
  • Mathematica
    RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)

Formula

a(n+1) = (2*n+1)*a(n)^2 + a(n), with a(0) = 1.

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 18 2024

A376048 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} = 3,1,4,1,5,... are the digits of Pi (cf. A000796).

Original entry on oeis.org

4, 5, 81, 1621, 13130101, 310319170452181, 21399552788917656689963823241, 1373822578697020375503379392874191898311737749943783762521
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

References

  • Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.

Crossrefs

Programs

  • Maple
    For Maple code for all these sequences, see A376056.

Formula

a(n+1) = b(n+1)*A376049(n) + 1.

A376942 Irregular table read by rows: row(n) is the lexicographically earliest sequence of positive integers a(n,1), a(n,2), ... a(n,k) such that Sum_{m = n..(n+k-1)} 1/(m*a(n,m-n+1)) <= 1.

Original entry on oeis.org

1, 1, 1, 2, 5, 100, 1, 1, 1, 1, 3, 53, 4947, 66072132, 1, 1, 1, 1, 1, 1, 23, 5270, 27999510, 1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400
Offset: 1

Views

Author

Scott R. Shannon, Oct 12 2024

Keywords

Comments

The terms in each row can grow rapidly in size, e.g., the 63rd and final term in row(25), 36333...86400, has 1728101 digits.
Conjecture: all rows have finite length.

Examples

			row(1) = 1 as 1/(1*1) = 1.
row(2) = 1, 1, 2, 5, 100 as 1/(2*1) + 1/(3*1) + 1/(4*2) + 1/(5*5) + 1/(6*100) = 1.
row(3) = 1, 1, 1, 1, 3, 53, 4947, 66072132 as 1/(3*1) + 1/(4*1) + 1/(5*1) + 1/(6*1) + 1/(7*3) + 1/(8*53) + 1/(9*4947) + 1/(10*66072132) = 1.
.
The table begins:
1;
1, 1, 2, 5, 100;
1, 1, 1, 1, 3, 53, 4947, 66072132;
1, 1, 1, 1, 1, 1, 23, 5270, 27999510;
1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440;
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400;
.
.
.
See the attached file for rows up to n = 25.
		

Crossrefs

Showing 1-3 of 3 results.