A376057 a(n) is the denominator of the sum S(n) defined in A376056.
1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
Offset: 0
Examples
The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..11
Programs
-
Maple
a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end: seq(a(n), n=0..7); # Alois P. Heinz, Oct 18 2024
-
Mathematica
RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)
Formula
a(n+1) = (2*n+1)*a(n)^2 + a(n), with a(0) = 1.
Extensions
a(0)=1 prepended by Alois P. Heinz, Oct 18 2024