cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376106 Expansion of e.g.f. LambertW(x / (1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 9, 56, 465, 4764, 58345, 830192, 13466817, 245254580, 4955259441, 109995693576, 2661003245329, 69682488950060, 1963774182830265, 59261538449833184, 1906643335934717697, 65149411890671521380, 2356212733788818122561, 89920484394446094721400
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=20; CoefficientList[InverseSeries[Series[x / (2*x + E^(-x)), {x, 0, nmax}], x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 20 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(lambertw(x/(1-2*x)))))
    
  • PARI
    a(n) = n!*sum(k=1, n, 2^(n-k)*(-k)^(k-1)*binomial(n-1, k-1)/k!);

Formula

E.g.f. A(x) satisfies A(x) = x * (2*A(x) + exp(-A(x))).
E.g.f.: Series_Reversion( x / (2*x + exp(-x)) ).
a(n) = n! * Sum_{k=1..n} 2^(n-k) * (-k)^(k-1) * binomial(n-1,k-1)/k!.

A377374 Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 3*x) ).

Original entry on oeis.org

1, 2, 9, 65, 653, 8439, 133609, 2506727, 54408633, 1341637595, 37055451101, 1133391705819, 38034022035877, 1389484163236727, 54899323023464529, 2332723285215012479, 106076669681270501105, 5140202768545661266227, 264427503283923495485221, 14392750805365239040586051
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x/(1-3*x))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^k*3^(n-k)*(k+1)^(k-1)*binomial(n, k)/k!);

Formula

E.g.f.: (1/x) * LambertW(x / (1 - 3*x)).
a(n) = n! * Sum_{k=0..n} (-1)^k * 3^(n-k) * (k+1)^(k-1) * binomial(n,k)/k!.
a(n) = A376107(n+1)/(n+1).
Showing 1-2 of 2 results.