cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377373 Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 2*x) ).

Original entry on oeis.org

1, 1, 3, 14, 93, 794, 8335, 103774, 1496313, 24525458, 450478131, 9166307798, 204692557333, 4977320639290, 130918278855351, 3703846153114574, 112155490349101041, 3619411771703973410, 124011196515200953819, 4496024219722304736070, 171963129575721708667341
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x/(1-2*x))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^k*2^(n-k)*(k+1)^(k-1)*binomial(n, k)/k!);

Formula

E.g.f.: (1/x) * LambertW(x / (1 - 2*x)).
a(n) = n! * Sum_{k=0..n} (-1)^k * 2^(n-k) * (k+1)^(k-1) * binomial(n,k)/k!.
a(n) = A376106(n+1)/(n+1).

A379700 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + 3*x*exp(x)) ).

Original entry on oeis.org

1, 4, 45, 889, 25613, 977271, 46586281, 2669066695, 178800270009, 13720918482235, 1187217400278941, 114379273346497611, 12144899525595998821, 1409261040317551952935, 177436990866294436727409, 24094164269339964351367231, 3510079015962779901366174449, 546103202348225740056486964467
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^(n-k)*(2*n-k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} 3^(n-k) * (2*n-k+1)^k * binomial(n+1,n-k)/k!.
Showing 1-2 of 2 results.