cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377374 Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + 3*x) ).

Original entry on oeis.org

1, 2, 9, 65, 653, 8439, 133609, 2506727, 54408633, 1341637595, 37055451101, 1133391705819, 38034022035877, 1389484163236727, 54899323023464529, 2332723285215012479, 106076669681270501105, 5140202768545661266227, 264427503283923495485221, 14392750805365239040586051
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x/(1-3*x))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^k*3^(n-k)*(k+1)^(k-1)*binomial(n, k)/k!);

Formula

E.g.f.: (1/x) * LambertW(x / (1 - 3*x)).
a(n) = n! * Sum_{k=0..n} (-1)^k * 3^(n-k) * (k+1)^(k-1) * binomial(n,k)/k!.
a(n) = A376107(n+1)/(n+1).

A379699 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + 2*x*exp(x)) ).

Original entry on oeis.org

1, 3, 27, 430, 10013, 309146, 11932303, 553740958, 30053978361, 1868855561938, 131048808861491, 10232894227577462, 880688476587319573, 82836081054992159194, 8454536286883278469431, 930656450818831650930766, 109910217042754940709650417, 13862746369348872200671305890
Offset: 0

Views

Author

Seiichi Manyama, Dec 30 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^(n-k)*(2*n-k+1)^k*binomial(n+1, n-k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..n} 2^(n-k) * (2*n-k+1)^k * binomial(n+1,n-k)/k!.
Showing 1-2 of 2 results.